Skip to main content

From Individual Plankton Cells To Pelagic Marine Ecosystems And To Global Biogeochemical Cycles

  • Chapter
Particle Analysis in Oceanography

Part of the book series: NATO ASI Series ((ASIG,volume 27))

Abstract

It is often assumed that the biological CO2 pump in the oceans is essentially driven by the upward flux of NO3, so that the potential export of biogenic carbon from the upper ocean is stoichiometrically equivalent to N-derived phytoplankton new production. The steady-state/stoichiometry model does not consider that ecosystem dynamics have a significant influence on the export or sequestration of biogenic carbon. Contrary to this assumption, there are several cases where ecosystems do have a significant effect on the export and sequestration of biogenic carbon. These include the fixation of nitrogen gas in the upper layer of the ocean (phytoplankton and coral reefs), the export of carbon by organisms with high carbon content (thecate dinoflagellates, coccolithophores, foraminifers, pteropods), the production of long-lived dissolved organic matter, and the fact that the pathways of export may differ in length and complexity. This is considered within the context of a general typology of pelagic marine ecosystems, based on the various possible combinations linking standing stock to production of phytoplankton: (1) production and standing stock dominated by large cells (e.g. upwelling, ice-edge and episodic blooms); (2) production by small and large cells, standing stock dominated by large cells (e.g. exceptional blooms); (3) production and standing stock of small and large cells (e.g. spring bloom in the North Atlantic); (4) production by small and large cells, standing stock dominated by small cells (e.g. Alaskan Gyre in the North Pacific); (5) production and standing stock dominated by small cells (e.g. oligotrophic ocean). These five types of ecosystems correspond to different modes of phytoplankton production (as controlled by hydrodynamics) and different structures (as reflected in the standing stocks), which influence the pathways of carbon export and sequestration as well as the renewable marine resources.

Contribution to the programme of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec) and Unité de recherche D13630, Centre National de la Recherche Scientifique (France)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge A (1984) The quantitative significance of gelatinous Zooplankton as pelagic consumers. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems. Plenum, New York, 407–433

    Google Scholar 

  • Atkins WRG (1945) Autotrophic flagellates as the major constituent of oceanic plankton. Nature 156:446–447

    Google Scholar 

  • Azam FT, Fenchel T, Field JG, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Barlow RG (1984) Dynamics of the decline of a phytoplankton bloom after an upwelling event. Mar Ecol Prog Ser 16:121–126

    Google Scholar 

  • Bé AWH, Spero HJ, Anderson OR (1982) Effects of symbiont elimination and reinfection on the life processes of the planktonic foraminifer Globigerinoides sacculifer. Mar Biol 70:73–86

    Google Scholar 

  • Beers JR (1966) Studies on the chemical composition of the major Zooplankton groups in the Sargasso Sea off Bermuda. Limnol Oceanogr 11:520–528

    Google Scholar 

  • Berger WH (1982) Deglacial CO2 buildup: Constraints on the coral reef model. Paleogeog Paleoclim Paleoecol 40:235–253

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley and Sons, Chichester, 1–34

    Google Scholar 

  • Berman T, Azov Y., Schneller A, Walline P, Townsend DW (1986) Extent, transparency and phytoplankton distribution of the neritic waters overlying the Israeli coastal shelf. Oceanol Acta 9:439–447

    Google Scholar 

  • Berner RA, Honjo S (1981) Pelagic sedimentation of aragonite: its geochemical significance. Science 211:940–942

    Google Scholar 

  • Bishop JKB (1989) Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley and Sons, Chichester, 117–137

    Google Scholar 

  • Bishop SS, Yoder JA, Paffenhöfer GA (1980) Phytoplankton and nutrient variability along a cross-shelf transect off Savannah, Georgia, U.S.A. Est Coast Mar Sci 11:359–368

    Google Scholar 

  • Boalch GT (1984) Algal blooms and their effects on fishing in the English Channel. Hydrobiologia 116/117:449–452

    Google Scholar 

  • Boalch GT, Harbour DS, Butler EI (1978) Seasonal phytoplankton production in the western English Channel. J Mar Biol Ass UK 58:943–953

    Google Scholar 

  • Brewer PG, Bruland KW, Eppley RW McCarthy JJ (1986) The Global Ocean Flux Study (GOFS): Status of the U.S. GOFS program. Eos 67:827–832

    Google Scholar 

  • Capone DG (1983) Benthic nitrogen fixation. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, 105–137

    Google Scholar 

  • Carpenter EJ (1983) Nitrogen fixation by marine Oscillatoria (Trichodesmium) in the world’s ocean. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, 65–103

    Google Scholar 

  • Codispoti LA (1989) Phosphorus vs. nitrogen limitation of new and export production. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley and Sons, Chichester, 377–394

    Google Scholar 

  • Cronin JR, Morris RJ (1982) The occurrence of high molecular weight humic material in recent organic-rich sediment from the Namibian shelf. Est Coast Shelf Sci 15:17–27

    Google Scholar 

  • Curl H (1962) Analyses of carbon in marine plankton organisms. J Mar Res 20:181–188

    Google Scholar 

  • Cushing DH (1988) The northerly wind. In: Rothschild BJ (ed) Toward a theory on biological-physical interactions in the world ocean. Kluwer, Dordrecht, 235–244

    Google Scholar 

  • Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J Plankton Res 11:1–13

    Google Scholar 

  • Cushing DH, Dickson R (1976) The biological response in the sea to climatic changes. Adv Mar Biol 14:1–122

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol Oceanogr 23:196–206

    Google Scholar 

  • Dymond J, Lyle H (1985) Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO2 variations during the Pleistocene. Limnol Oceanogr 30:699–712

    Google Scholar 

  • Eppley RW (1989) New production: history, methods, problems. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley and Sons, Chichester, 85–97

    Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the upper ocean. Nature 282:677–680

    Google Scholar 

  • Fenchel T (1984) Suspended marine bacteria as a food source. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems. Plenum, New York, 301–315

    Google Scholar 

  • Gilmer RW, Harbison GR (1990) The diet of Limacina helicina (Gastropoda: Thecosomata) in Arctic waters in late summer. Eos 71:77 (abstract)

    Google Scholar 

  • Goldman JC (1988) Spatial and temporal discontinuities of biological processes in pelagic surface waters. In: Rothschild BJ (ed) Toward a theory on biological-physical interactions in the world ocean. Kluwer, Dordrecht, 273–296

    Google Scholar 

  • Gorsky G, Dallot S, Sardou J, Fenaux R, Carré C, Palazzoli I (1988) C and N composition of some northwestern Mediterranean plankton and micronekton species. J Exp Mar Biol Ecol 124:133–144

    Google Scholar 

  • Gosselin S, Fortier L, Gagné JA (1989) Vulnerability of marine fish larvae to the toxic dinoflagellate Protogonyaulax tamarensis. Mar Ecol Prog Ser 57:1–10

    Google Scholar 

  • Graf G, Bengtsson W, Diesner U, Schulz R, Theede H, (1982) Benthic response to a spring phytoplankton bloom: process and budget. Mar Biol 67:201–208

    Google Scholar 

  • Graf G, Bengtsson W, Faubel A, Meyer-Reil LA, Schulz R, Theede H, Thiel H (1984) The importance of the spring phytoplankton bloom for the benthic system of Kiel Bight. Rapp P-V Réun Cons Int Explor Mer 183:136–143

    Google Scholar 

  • Grall JR (1972a) Développement “printanier” de la diatomée Rhizosolenia delicatula près de Roscoff. Mar Biol 16:41–48

    Google Scholar 

  • Grall JR (1972b) Recherches quantitatives sur la production primaire du phytoplancton dans les parages de Roscoff. Thèse Doc Sci Nat, Univ Paris 6

    Google Scholar 

  • Haug A, Myklestad S, Sakshaug E (1973) Studies on the phytoplankton ecology of the Trondheimsfjord. I. The chemical composition of phytoplankton populations. J Exp Mar Biol Ecol 11:15–26

    Google Scholar 

  • Heinbokel JF (1986) Occurrence of Richelia intracellularis (Cyanophyta) within the diatoms Hemiaulus haukii and H. membranaceus off Hawaii. J Phycol 22:399–403

    Google Scholar 

  • Herbland A, Le Bouteiller A (1981) The size distribution of phytoplankton and particulate organic matter in the equatorial Atlantic Ocean: importance of ultraseston and consequences. J Plankton Res 3:659–673

    Google Scholar 

  • Holligan PM, (1987) The physical environment of exceptional phytoplankton blooms in the northeast Atlantic. Rapp P-V Réun Cons Int Explor Mer 187:9–18

    Google Scholar 

  • Holligan PM, Aiken J, Groom S (1988a) Bio-optical studies in the N.E. Atlantic in June, 1987. Eos 69:1117 (abstract)

    Google Scholar 

  • Holligan PM, Ackleson SG, Balch WM (1988b) The 1988 coccolithophore bloom in the Gulf of Maine. Eos 69:1132 (abstract)

    Google Scholar 

  • Holligan PM, Harbour DS (1977) The vertical distribution and succession of phytoplankton in the western English Channel in 1975 and 1976. J Mar Biol Ass UK 57:1075–1093

    Google Scholar 

  • Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Philippe M (1983) Satelliteand ship studies of coccolithophore production along a continental shelf edge. Nature 304:339–342

    Google Scholar 

  • Honjo S (1980) Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones. J Mar Res 38:53–97

    Google Scholar 

  • Honjo S (1982) Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science 218:883–884

    Google Scholar 

  • Honjo S, Roman MR (1978) Marine copepod fecal pellets: production, preservation and sedimentation. J Mar Res 36:45–57

    Google Scholar 

  • Iverson RL, Curl HC, O’Connors HB, Kirk D, Zakar K (1974) Summer phytoplankton blooms in Auke Bay, Alaska, driven by wind mixing of the water column. Limnol Oceanogr 19:271–278

    Google Scholar 

  • Jørgensen BB, Erez J., Revsbech NP, Cohen Y (1985) Symbiotic photosynthesis in a planktonicforaminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnol Oceanogr 30:1253–1267

    Google Scholar 

  • King KR, Hollibaugh JT, Azam F (1980) Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns. Mar Biol 56:49–57

    Google Scholar 

  • Klein B, Sournia A, (1987) A daily study of the diatom spring bloom at Roscoff (France) in 1985. II. Phytoplankton pigment composition studied by HPLC analysis. Mar Ecol Prog Ser 37:265–275

    Google Scholar 

  • Lancelot C, Billen G (1985) Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Adv Aquat Microbiol 3:263–321

    Google Scholar 

  • Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis MJW, Davies A and Wassman P (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16:38–46

    Google Scholar 

  • Lasker R (1988) Food chains and fisheries: an assessment after 20 years. In: Rothschild BJ (ed) Toward a theory on biological-physical interactions in the world ocean. Kluwer, Dordrecht, 173–182

    Google Scholar 

  • Le Fèvre J (1986) Aspects of the biology of frontal systems. Adv Mar Biol 23:163–299

    Google Scholar 

  • Le Fèvre J, Frontier S (1988) Influence of temporal characteristics of physical phenomena on plankton dynamics, as shown by North-West European marine ecosystems. In: Rothschild BJ (ed) Toward a theory on biological-physical interactions in the world ocean. Kluwer, Dordrecht, 245–272

    Google Scholar 

  • Legendre L (1990) The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. J Plankton Res 12:681–699

    Google Scholar 

  • Legendre L, Demers S, Delesalle B, Harnois C (1988) Biomass and photosynthetic activity of phototrophic picoplankton in coral reef waters (Moorea Island, French Polynesia). Mar Ecol Prog Ser 47:153–160

    Google Scholar 

  • Legendre L, Demers S, Lefaivre D (1986) Biological production at marine ergoclines. In: Nihoul JCJ (ed) Marine interfaces ecohydrodynamics. Elsevier, Amsterdam, 1–29

    Google Scholar 

  • Legendre L, Gosselin M (1989) New production and export of organic matter to the deep ocean: consequences of some recent discoveries. Limnol Oceanogr 34:1374–1380

    Google Scholar 

  • Legendre L, Le Fèvre J (1989) Hydrodynamic singularities as controls of recycled versus export production in oceans. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley and Sons, Chichester, 49–63

    Google Scholar 

  • Legendre L, Yentsch CM (1989) Overview of flow cytometry and image analysis in biological oceanography and limnology. Cytometry 10:501–510

    Google Scholar 

  • Lewis MR, Harrison WG, Oakey NS, Hebert D, Platt T (1986) Vertical nitrate fluxes in the oligotrophic ocean. Science 234:870–873

    Google Scholar 

  • Li WKW, Subba Rao DV, Harrison WG, Smith JC, Cullen JJ, Irwin B, Platt T (1983) Autotrophic picoplankton in the tropical ocean. Science 219:292–295

    Google Scholar 

  • Lisitzin AP (1972) Sedimentation in the world ocean. Soc Econ Paleon Miner, Tulsa, OK, Spec Publ 17

    Google Scholar 

  • Loeblich AR III (1970) The amphiesma or dinoflagellate cell covering. Proc North American Paleont Convention, Chicago, Sept 1969. Allen Press, Lawrence, Kansas, Vol. 2, Part G:867–929

    Google Scholar 

  • Longhurst AR, Williams R (1979) Materials for plankton modelling: vertical distribution of Atlantic Zooplankton in summer. J Plankton Res 1:1–28

    Google Scholar 

  • Mague TH, Weare NM, Holme-Hansen O (1974) Nitrogen fixation in the North Pacific Ocean. Mar Biol 24:109–119

    Google Scholar 

  • Mann KH (1982) Ecology of coastal waters. A systems approach. Studies in Ecology, Vol. 8. Univ of California Press, Berkeley

    Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–309

    Google Scholar 

  • Mazé R, Camus Y, Le Tareau JY (1986) Formation de gradients thermiques à la surface de l’océan, au-dessus d’un talus, par interaction entre les ondes internes et le mélange dû au vent. J Cons Int Explor Mer 42, 221–240

    Google Scholar 

  • McAllister CD, Parsons TR, Strickland JDH (1960) Primary productivity and fertility at station “P” in the north-east Pacific Ocean. J Cons Int Explor Mer 25, 240–259

    Google Scholar 

  • Michaels AF, Silver MW (1988) Primary production, sinking fluxes and the microbial food web. Deep-Sea Res 35:473–490

    Google Scholar 

  • Miller CB, SUPER Group (1988) Lower trophic level production dynamics in the oceanic Subarctic Pacific Ocean. In: Nemoto T, Pearcy WG (eds) The biology of the subarctic Pacific, Proceedings of the Japan-United States of America seminar on the biology of micronekton of the Subarctic Pacific, Part I. Bull Ocean Res Inst Univ Tokyo 26:35–48

    Google Scholar 

  • Morin P, Le Corre P, Le Fèvre J (1985) Assimilation and regeneration of nutrients off the west coast of Brittany. J Mar Biol Ass UK 65:677–695

    Google Scholar 

  • Nelson DM, Smith WO (1986) Phytoplankton bloom dynamics of the western Ross Sea ice edge — II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res 33:1389–1412

    Google Scholar 

  • Nevo Z, Sharon Z (1969) The cell wall of Peridinium westii a non-cellulosic glucan. Biochim Biophys Acta 173:161–175

    Google Scholar 

  • Ohki K, Fujita Y (1988) Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. Mar Biol 98:111–114

    Google Scholar 

  • Olson RJ (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr 25:1064–1074

    Google Scholar 

  • Omori M (1969) Weight and chemical composition of some important oceanic Zooplankton in the North Pacific Ocean. Mar Biol 3:4–10

    Google Scholar 

  • Paerl HW (1977) Nanoplankton vs netplankton photosynthetic and heterotrophic activities in Fijian waters of the South Pacific Ocean. Lau-Tonga Bull 117:211–221

    Google Scholar 

  • Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33:823–847

    Google Scholar 

  • Parsons TR, Lalli CM (1988) Comparative oceanic ecology of the plankton communities of the subarctic Atlantic and Pacific oceans. Oceanogr Mar Biol Ann Rev 26:317–359

    Google Scholar 

  • Peinert R, von Bodungen B, Smetacek VS (1989) Food web structure and loss rate. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley and Sons, Chichester, 35–48

    Google Scholar 

  • Pingree RD, Holligan PM, Mardell GT, Head RN (1976) The influence of physical stability on spring, summer and autumn phytoplankton blooms in the Celtic Sea. J Mar Biol Ass UK 56:845–873

    Google Scholar 

  • Pingree RD, Mardell GT (1981) Slope turbulence, internal waves and phytoplankton growth at the Celtic Sea shelf-break. Phil Trans R Soc London A 302:663–682

    Google Scholar 

  • Platt T, Calvert S, Denman K, Lewis M, Mann K, Vézina A, Wong CS (1989a) Canadian National Programme for the Joint Global Ocean Flux Study. Canadian Committee for JGOFS, Halifax

    Google Scholar 

  • Platt T, Harrison WG, Lewis MR, Li WKW, Sathyendranath S, Smith RE, Vézina AF (1989b) Biological production of the oceans: the case for a consensus. Mar Ecol Prog Ser 52:77–88

    Google Scholar 

  • Platt T, Subba Rao DV, Irwin B (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301:702–704

    Google Scholar 

  • Poutanen EL, Morris RJ (1983) The occurrence of high molecular weight humic compounds in the organic-rich sediments of the Peru continental shelf. Oceanol Acta 6:21–28

    Google Scholar 

  • Ramanathan V, Cicerone RJ, Singh HB, Kiehl JT (1985) Trace gas trends and their potential role in climatic change. J Geophys Res 90:5547–5566

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Amer Scientist 46:205–222

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea water. In: Hill MN (ed) The sea. Interscience, New York, vol. 2, 26–77

    Google Scholar 

  • Rougerie F, Wauthy B (1986) Le concept d’endo-upwelling dans le fonctionnement des atolls-oasis. Oceanol Acta 9:133–148

    Google Scholar 

  • Rothschild BJ (1988) Dynamics of marine fish populations. Harvard Univ. Press, Cambridge, MA

    Google Scholar 

  • Russell FS, Southward AJ, Boalch GT, Butler El (1971) Changes in biological conditions in the English Channel off Plymouth during the last half century. Nature 234:468–470

    Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166:72–76

    Google Scholar 

  • Sandström H, Elliott JA (1984) Internal tides and solitons on the Scotian shelf: A nutrient pump at work. J Geophys Res 89:6415–6426

    Google Scholar 

  • Serpette A., Mazé R. (1989) Internal tides in the Bay of Biscay — A two-dimensional model. Cont Shelf Res 9:795–821

    Google Scholar 

  • Sieburth JMcN, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Google Scholar 

  • Silver MW, Gowing MM, Davoll PJ (1986) The association of photosynthetic picoplankton and ultraplankton with pelagic detritus through the water column (0–2000 m). In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Can Bull Fish Aquat Sci 214:311–341

    Google Scholar 

  • Simpson JH (1981) The shelf-sea fronts: Implications of their existence and behaviour. Phil Trans R Soc London A 302:531–546

    Google Scholar 

  • Smetacek V, von Bodungen B, Knoppers B, Peinert R, Pollehne F, Stegmann P, Zeitschel B (1984) Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapp P-V Réun Cons Int Explor Mer 183:126–135

    Google Scholar 

  • Smetacek V, Passow U (1990) Spring bloom initiation and Sverdrup’s critical depth model. Limnol Oceanogr 35:228–233

    Google Scholar 

  • Smith SL (1982) The northwestern Indian Ocean during the monsoons of 1979: distribution, abundance and feeding of Zooplankton. Deep-Sea Res 29:1331–1353

    Google Scholar 

  • Smith DJ, Eglinton G, Morris RJ (1983) Interfacial sediment and assessment of organic input from a highly productive water column. Nature 304:259–262

    Google Scholar 

  • Smith WO, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166

    Google Scholar 

  • Sournia A, Birrien JL, Douvillé JL, Klein B, Viollier M (1987) A daily study of the diatom spring bloom at Roscoff (France) in 1985. I. The spring bloom within the annual cycle. Est Coast Shelf Sci 25:355–367

    Google Scholar 

  • Southward AJ (1974) Long term changes in abundance of eggs of the Cornish pilchard (Sardina pilchardus Walbaum) off Plymouth. J Mar Biol Ass UK 54:641–649

    Google Scholar 

  • Southward AJ (1980) The western English Channel — an inconstant ecosystem? Nature 285:361–366

    Google Scholar 

  • Southward AJ (1983) Fluctuations in the ecosystems of the Western Channel: a summary of studies in progress. Oceanol Acta, Proceedings 17th European Marine Biology Symposium (special issue): 187–189

    Google Scholar 

  • Suess E (1973) Interaction of organic compounds with calcium carbonate. II. Organo-carbonate association in recent sediments. Geochim Cosmochim Acta 37:2435–2447

    Google Scholar 

  • Sugimura Y, Suzuki Y (1988) A high temperature catalytic oxidation method of non-volatile dissolved organic carbon in seawater by direct injection of liquid samples. Mar Chem 24:105–131

    Google Scholar 

  • Sundquist ET (1985) Geological perspectives on carbon dioxide and the carbon cycle. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. AGU Monograph 32, Amer Geophys Union, Washington DC, 5–59

    Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Int Explor Mer 18:287–295

    Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans. Their physics, chemistry and general biology. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Takahashi K, Bé AWH (1984) Planktonic foraminifers: factors controlling sinking speeds. Deep-Sea Res 31:1477–1500

    Google Scholar 

  • Takahashi M, Hori T (1984) Abundance of picoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Mar Biol 79:177–186.

    Google Scholar 

  • Takahashi M, Seibert DL, Thomas WH (1977) Occasional blooms of phytoplankton during summer in Saanich Inlet, B.C., Canada. Deep-Sea Res 24:775–780

    Google Scholar 

  • Tett P (1987) The ecophysiology of exceptional blooms. Rapp P-V Réun Cons Int Explor Mer 187:47–60

    Google Scholar 

  • Toggweiler JR (1989) Is the downward dissolved organic matter (DOM) flux important in carbon transport? In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past, Wiley and Sons, Chichester, 65–83

    Google Scholar 

  • Venrick EL (1974) The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre. Limnol Oceanogr 19:437–445

    Google Scholar 

  • Volk T (1989) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial. Nature 337:637–638

    Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean driven CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. AGU Monograph 32, Amer Geophys Union, Washington DC, 99–110

    Google Scholar 

  • Wafar M, Le Corre P, Birrien JL (1984) Seasonal changes of dissolved organic matter (C, N, P) in permanently well mixed temperate waters. Limnol Oceanogr 29:1127–1132

    Google Scholar 

  • Walsh JJ (1989) How much shelf production reaches the deep sea? In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past, Wiley and Sons, Chichester, 175–191

    Google Scholar 

  • Ward BB, Zafiriou OC (1988) Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific. Deep-Sea Res 35:1127–1142.

    Google Scholar 

  • Webb KL, DuPaul WD, Wiebe W, Sottile W, Johannes RE (1975) Enewetak (Eniwetok) Atoll: Aspects of the nitrogen cycle on a coral reef. Limnol Oceanogr 20:198–210

    Google Scholar 

  • White AW (1984) Paralytic shellfish toxins and finfish. In: Ragelis EP (ed) Seafood toxins. ACS Symposium series 262, Amer Chem Soc. Washington DC, 171–180

    Google Scholar 

  • Wiebe WJ, Johannes RE, Webb KL (1975) Nitrogen fixation in a coral reef community. Science 188:257–259

    Google Scholar 

  • Wilson DL, Smith WO, Nelson DM (1986) Phytoplankton dynamics of the western Ross Sea ice edge — I. Primary productivity and species-specific production. Deep-Sea Res 33:1375–1387

    Google Scholar 

  • Wynne D, Patni NJ, Aaroson S, Berman T (1982) The relationship between nutrient status and chemical composition of Peridinium cinctum in Lake Kinneret. J Plankton Res 1:125–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Legendre, L., Le Fèvre, J. (1991). From Individual Plankton Cells To Pelagic Marine Ecosystems And To Global Biogeochemical Cycles. In: Demers, S. (eds) Particle Analysis in Oceanography. NATO ASI Series, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75121-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75121-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75123-3

  • Online ISBN: 978-3-642-75121-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics