Concentration-Variable Interactions Between Calanoid Copepods and Particles of Different Food Quality: Observations and Hypotheses

  • Henry A. Vanderploeg
  • Gustav-Adolf Paffenhöfer
  • James R. Liebig
Part of the NATO ASI Series book series (volume 20)


The two major issues of research in feeding behavior of calanoid copepods and, indeed, in all research on zooplankton feeding have been concentration- variable selection and food quality (Vanderploeg in press). The concentration- variable selectivity hypotheses in its earliest form stated that copepods would track peaks in natural particle-size spectra, that is, focus their efforts on the most abundant food (Vanderploeg 1981a; Vanderploeg et al. 1984). The counter hypothesis is that selectivity, when expressed as W’ or other appropriate measures, remains invariant no matter what the relative proportions or total concentration of the various food types (Vanderploeg and Scavia 1979a,b; Vanderploeg 1981a; Vanderploeg et al. 1984).


Fecal Pellet Calanoid Copepod Equivalent Spherical Diameter Filter Lake Water Large Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcaraz M, Paffenhoer G-A, Strickler JR (1980) Catching the algae: a first account of visual observations on filter feeding calanoids. Am Soc Limnol Oceanogr Spec Symp 3:241–248. New EnglandGoogle Scholar
  2. Andrews JC (1983) Deformation of the active space in the low Reynolds number feeding current of calanoid copepods. Can J Fish Aquatic Sci 40: 1293–1302CrossRefGoogle Scholar
  3. Barrientos Chacon, Y (1980) Ultrastructure of sensory units of the first antennae of calanoid copepods. MS Thesis, University of Ottawa, Ontario, Canada, 81 ppGoogle Scholar
  4. Chesson J (1983) The estimation and analysis of preference and its relationship to foraging models. Ecology 64: 1297–1304CrossRefGoogle Scholar
  5. DeMott WR (1986) The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334–340CrossRefGoogle Scholar
  6. DeMott WR (1988) Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol Oceanogr 33: 397–408CrossRefGoogle Scholar
  7. DeMott WR (1989) Optimal foraging theory as a predictor of chemically mediated food selection by suspension-feeding copepods. Limnol Oceanog 34: 140CrossRefGoogle Scholar
  8. Donaghay PL (1980) Grazing interactions in the marine environment. Am Soc Limnol Oceanogr Spec Symp 3:234–240. New EnglandGoogle Scholar
  9. Friedman MM (1980) Comparative morphology and functional significance of copepod receptors and oral sturctures, Am Soc Limnol Oceanogr Spec Symp 3:185–197. New EnglandGoogle Scholar
  10. Fulton, RS III (1988) Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biology 20: 263–271CrossRefGoogle Scholar
  11. Fulton RS III, Paerl HW (1988) Zooplankton feeding selectivity for unicellular and colonial Microcystis aeruginosa. Bull of Mar Sci 43 (3): 500–508Google Scholar
  12. Hughes RN (1980) Optimal foraging in the marine context. Oceanogr Mar Biol Annu Rev 18: 428–449Google Scholar
  13. Koehl MAR, Strieker JR (1981) Copepod feeding currents: food capture at low Reynolds number, Limnol Oceanogr 26: 1062–1073CrossRefGoogle Scholar
  14. Legier-Visser J, Mitchell, Okubo A, Fuhrman JA (1986) Mechanoreception in calanoid copepods, a mechanism for prey detection. Mar Biol 90: 529–535CrossRefGoogle Scholar
  15. Leyhausen P (1973) Verhaltensstudien an katzen, Parey, Berlin and Hamburg. 232 ppGoogle Scholar
  16. Paffenhofer G-A, Stearns DE (1988) Why is Acartia tonsa ( Copepoda: Calanoida) restricted to the nearshore environment? Mar Ecol Prog Ser 42: 33–38Google Scholar
  17. Paffenhofer G-A, Strieker JR, AlcarazM (1982) Suspension-feeding by herbivorous calonoid copepods: a cinematographic study. Mar Biol 67: 193–199Google Scholar
  18. Paffenhofer G-A, Van Sant KB (1985) The feeding response of a marine planktonic copepod to quantity and quality of particles. Mar Ecol Prog Ser. 27: 55–65CrossRefGoogle Scholar
  19. Poulet SA, Marsot P (1980) Chemosensory grazing by marine calanoid copepods ( Arthropoda: Crustacea). Science 200: 403–405Google Scholar
  20. Price HJ, Paffenhoffer G-A (1985) Perception of food availability by calanoid copepods. Arch Hydrobiol Beih 21: 115–124Google Scholar
  21. Price HJ, Paffenhoffer G-A (1986) Capture of small cells by the copepod Eucalanus elongatus. Limnol Oceanogr 31: 189–194CrossRefGoogle Scholar
  22. Price HJ, Paffenoffer G-A, Strickler JR (1983) Modes of cell capture in calanoid copepods. Limnol Oceanogr 28: 156–163CrossRefGoogle Scholar
  23. Fyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and test, Q. Rev Biol 52: 137–154.CrossRefGoogle Scholar
  24. Strickler JR (1982) Calanoid copepods, feeding currents, and the role of gravity. Science 218: 158–160PubMedCrossRefGoogle Scholar
  25. Vanderploeg HA (1981a) Seasonal particle-size selection by Diaptomus sicilis in offshore Lake Mich. Can J Fish Aquat Sci 38: 504–517CrossRefGoogle Scholar
  26. Vanderploeg HA (1981b) Effect of the algal length/aperture length ratio on Coulter analyses of Lake seston. Can J Fish Aquat Sci 38: 912–916CrossRefGoogle Scholar
  27. Vanderploeg HA (in press) Feeding mechanisms and their relation to particle selection and feeding in suspension-feeding zooplankton. In: Wotton R (ed) The Biology of Particles in Aquatic SystemsGoogle Scholar
  28. Vanderploeg HA, Paffenhofer G-A (1985) Modes of algal capture by the freshwater copepod Diaptomus sicilis and their relation to food-size selection. Limnol Oceanogr 30:871–885Google Scholar
  29. Vanderploeg HA, Paffenhofer G-A, Uebig JR (1988) Diaptomus vs. net phyto- plankton: effects of algal size and morphology on selectivity of a behavior- ally flexible, omnivorous copepod. Bull Mar Sci 43: 377–394Google Scholar
  30. Vanderploeg HA, Scavia D (1979a) Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecol Modeling 7: 135–149CrossRefGoogle Scholar
  31. Vanderploeg, HA, Scavia D (1979b) Two electivity indices for feeding with special refernce to zooplankton grazing. J Fish Res Board Can 36: 362–365CrossRefGoogle Scholar
  32. Vanderploeg HA, Scavia D, Liebig JR (1984) Feeding rate of Diaptomus sicilisand its relation to selectivity and effective food concentration in algal mixtures and in Lake Michigan. J Plankton Res 6: 919–941CrossRefGoogle Scholar
  33. Vanderploeg HA, Eadie BJf Uebig JR, Tarapchak SJ, Glover, RM (1987) Contribution of calcite to the particle-size spectrum of Lake Michigan seston and its interactions with the plankton. Can J Fish Aquat Sci 44: 1898–1914Google Scholar
  34. Williamson CE, Butler NM (1986) Predation on rotifers by the suspension-feeding copepod Diaptomus pallidus. Limnol Oceanogr 31: 393–402CrossRefGoogle Scholar
  35. Williamson CE, Vanderploeg HA (1988) Predatory suspension-feeding in DiaptomusGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Henry A. Vanderploeg
    • 1
  • Gustav-Adolf Paffenhöfer
    • 2
  • James R. Liebig
    • 1
  1. 1.U.S. Department of Commerce, NOAAGreat Lakes Environmental Research LaboratoryAnn ArborUSA
  2. 2.Skidaway Institute of OceanographySavannahUSA

Personalised recommendations