Skip to main content

Isotope Geochemistry of Primary and Secondary Carbonate Minerals in the Shaban-Deep (Red Sea)

  • Chapter
Sediments and Environmental Geochemistry

Abstract

The isotopic composition of carbonate sediments from the Shaban Deep indicates that minerals of low- and high-Mg calcite and aragonite formed in near-isotopic equilibrium with Red-Sea-water bicarbonate at normal sedimentary temperatures.

However, within organic-rich layers, diagenetically formed dolomite and rhodochrosite are found. The isotopic composition of the poorly ordered dolomite is characterized by negative δ13C values (δ13Cmin = − 5.7‰). This indicates that 12C-rich biogenic CO2 contributed to the carbonate formation. It is believed that this 12C-rich biogenic Co2 was formed during the anaerobic oxidation of organic matter during sulphate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bischoff JL (1969) Red Sea geothermal brine deposits: Their mineralogy, chemistry and genesis. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin Heidelberg New York, pp 368–401

    Google Scholar 

  • Claypool GE, Kaplan IR (1974) The origin and distribution of methane in marine sediments. In: Kaplan IR (ed) Natural gases in marine sediments: marine science, vol 3. Plenum, New York, pp 99–139

    Google Scholar 

  • Degens ET (1976) Molecular mechanisms of carbonate, phosphate and silica deposition in the living cell. Springer, Berlin Heidelberg New York, 112 pp

    Google Scholar 

  • Degens ET, Epstein S (1964) Oxygen and carbon isotope ratios in coexisting calcites and dolomites from recent and ancient sediments. Geochim Cosmochim Acta 28:23–44

    Article  Google Scholar 

  • Degens ET, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin Heidelberg New York, 600 pp

    Google Scholar 

  • Deuser WG (1968) Postdepositional changes in the oxygen isotope ratios of Pleistocene foraminifera tests in the Red Sea. J Geophys Res 73:3311

    Article  Google Scholar 

  • Deuser WG, Degens ET (1969) O-18/O-16 and C-13/C12 ratios of fossils from the hot brine deep area of the central Red Sea. In: Degens ET, Ross D (eds) Hot brines and recent heavy metal deposits. Springer, Berlin Heidelberg New York, pp 336–347

    Google Scholar 

  • Ellis JP, Milliman JD (1985) Calcium carbonate suspended in Arabian Gulf and Red Sea waters: Biogenic and detrital, not “chemogenic”. J Sediment Petrol 55:805–808

    Google Scholar 

  • Emrich K, Ehhalt DH, Vogel JC (1970) Carbon fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371

    Article  Google Scholar 

  • Epstein S, Graf DL, Degens ET (1964) Oxygen isotope studies on the origin of dolomites. In: Craig H, Miller SL, Wasserburg GJ (eds) Isotopic and cosmic chemistry. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 169–180

    Google Scholar 

  • Fritz P, Smith DGW (1970) The isotopic composition of secondary dolomites. Geochim Cosmochim Acta 43:1161–1173

    Article  Google Scholar 

  • Gevirtz JL, Friedman GM (1966) Deep sea carbonate sediments of the Red Sea and their implications on marine lithification. J Sediment Petrol 36:143–152

    Google Scholar 

  • Herman YR (1965) Etudes des sédiments quaternaires de la Mer Rouge. PhD Theesis, Univ Paris. Masson, Paris, pp 341–415

    Google Scholar 

  • Irwin H (1980) Early diagenetic carbonate precipitation and pore fluid migration in the Kimmeridge clay of Dorset, England. Sedimentology 27:577–591

    Article  Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature (London) 269:209–213

    Article  Google Scholar 

  • Kharaka YK, Berry AF, Friedman I (1973) Isotopic composition of oil-field brines from Kettleman North Dome, California and their geological implications. Geochim Cosmochim Acta 37:1899–1908

    Article  Google Scholar 

  • Keeling CD (1958) The concentration and isotopic abundance of carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334

    Article  Google Scholar 

  • Kelts KR, McKenzie JA (1980) Formation of deep sea dolomites in anoxic diatomaceous oozes. 26th Int Geolical Congr, Paris. Fr (Abstr)

    Google Scholar 

  • Land LS (1980) The isotope and trace element geochemistry of dolomite: the state of the art. Spec Publ Soc Econ Paleontol Mineral 28:87–110

    Google Scholar 

  • Matthews A, Katz A (1977) Oxygen isotope fractionations during the dolomitization of calcium carbonate. Geochim Cosmochim Acta 41:1431–1438

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • McKenzie JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkas of Abu Dhabi. U. A. E.: a stable tope study. J Geol 89:185–198

    Article  Google Scholar 

  • Milliman JD, Ross DA, Ku T (1969) Precipitation and lithification of deep sea carbonates in the Red Sea. J Sediment Petrol 39, 2:724–736

    Google Scholar 

  • Müller G, Gastner M (1971) The carbonate bombe, a simple device for the determination of the carbonate content in sediments, soils and other materials. N Jahrb Mineral 10:466–469

    Google Scholar 

  • Northrop DA, Clayton RN (1966) Oxygen-isotope fractionation in systems containing dolomite. J Geol 74:174–196

    Article  Google Scholar 

  • O’Neil, JR, Epstein S (1966) Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science 152:198–201

    Article  Google Scholar 

  • Pautot G, Guennoc P, Contelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature (London) 310:133–136

    Article  Google Scholar 

  • Pisciotto KA, Mahoney JJ (1981) Isotopic survey of diagenetic carbonates. Deep Sea Drilling Project Leg 23. In: Yeats RS, Haq BU et al. (eds) Init Rep Deep Sea Drill Proj 63. US Gov Print Off, Washington DC, pp 595–609

    Google Scholar 

  • Puchelt H, Laschek D (1984) Marine Erzvorkommen im Roten Meer. Fridericiana Z Univ Karlsruhe, vol 34

    Google Scholar 

  • Rossignol-Strick M (1987) Rainy periods and bottom water stagnation initiating brine accumulation and metal concentrations: 1. The late quaternary. Paleoceanography 2:379–394

    Article  Google Scholar 

  • Rubinson M, Clayton RN (1969) Carbon C-13 fractionation between aragonite and calcite. Geochim Cosmochim Acta 33:997–1002

    Article  Google Scholar 

  • Schoell M, Faber E (1978) New isotopic evidence for the origin of Red Sea brines. Nature 275:436–438

    Article  Google Scholar 

  • Schoell M, Stahl W (1972) The carbon isotopic composition and the concentration of dissolved anorganic carbon in the Atlantis II Deep brines, Red Sea. Earth Planet Sci Lett 15:206–211

    Article  Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279 and 282. In: Kennett JP, Houtz RE (eds) Init Rep Deep Sea Drill Proj 29. US Gov Print Off, Washington DC, pp 743–755

    Google Scholar 

  • Sharma T, Clayton RN (1965) Measurement of O-18/O-16 ratios of total oxygen of carbonates. Geochim Cosmochim Acta 29:1347–1353

    Article  Google Scholar 

  • Stoffers P, Botz R (1989) Carbonate Crusts in the Red Sea: Their Composition and Isotope Geochemistry In: Ittekott V, Kempe S, Michaelis W, Spitzy A, (Eds.) Facets of modern biogeochemistry, Festschrift for E T Degens Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Tarutani I, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996

    Article  Google Scholar 

  • Thunell RC, Locke SM, Williams DF (1988) Glacioeustatic sea-level control on the Red Sea salinity. Nature (London) 334:601–604

    Article  Google Scholar 

  • Wada H, Niitsuma N, Nagasawa K, Okada H (1982) Deep sea carbonate nodules from the Middle American Trench area off Mexico, Deep Sea Drilling Project Leg 66. In: Watkins JS, Moore JC et al: (eds) Init Rep Deep Sea Drill Proj 66. US Gov Print Off, Washington DC, pp 453–474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoffers, P., Botz, R., Scholten, J. (1990). Isotope Geochemistry of Primary and Secondary Carbonate Minerals in the Shaban-Deep (Red Sea). In: Heling, D., Rothe, P., Förstner, U., Stoffers, P. (eds) Sediments and Environmental Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75097-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75097-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75099-1

  • Online ISBN: 978-3-642-75097-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics