Isotope Geochemistry of Primary and Secondary Carbonate Minerals in the Shaban-Deep (Red Sea)

  • P. Stoffers
  • R. Botz
  • J. Scholten

Abstract

The isotopic composition of carbonate sediments from the Shaban Deep indicates that minerals of low- and high-Mg calcite and aragonite formed in near-isotopic equilibrium with Red-Sea-water bicarbonate at normal sedimentary temperatures.

However, within organic-rich layers, diagenetically formed dolomite and rhodochrosite are found. The isotopic composition of the poorly ordered dolomite is characterized by negative δ13C values (δ13Cmin = − 5.7‰). This indicates that 12C-rich biogenic CO2 contributed to the carbonate formation. It is believed that this 12C-rich biogenic Co2 was formed during the anaerobic oxidation of organic matter during sulphate reduction.

Keywords

Calcite Fractionation Drilling Bicarbonate Dolomite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bischoff JL (1969) Red Sea geothermal brine deposits: Their mineralogy, chemistry and genesis. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin Heidelberg New York, pp 368–401Google Scholar
  2. Claypool GE, Kaplan IR (1974) The origin and distribution of methane in marine sediments. In: Kaplan IR (ed) Natural gases in marine sediments: marine science, vol 3. Plenum, New York, pp 99–139Google Scholar
  3. Degens ET (1976) Molecular mechanisms of carbonate, phosphate and silica deposition in the living cell. Springer, Berlin Heidelberg New York, 112 ppGoogle Scholar
  4. Degens ET, Epstein S (1964) Oxygen and carbon isotope ratios in coexisting calcites and dolomites from recent and ancient sediments. Geochim Cosmochim Acta 28:23–44CrossRefGoogle Scholar
  5. Degens ET, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin Heidelberg New York, 600 ppGoogle Scholar
  6. Deuser WG (1968) Postdepositional changes in the oxygen isotope ratios of Pleistocene foraminifera tests in the Red Sea. J Geophys Res 73:3311CrossRefGoogle Scholar
  7. Deuser WG, Degens ET (1969) O-18/O-16 and C-13/C12 ratios of fossils from the hot brine deep area of the central Red Sea. In: Degens ET, Ross D (eds) Hot brines and recent heavy metal deposits. Springer, Berlin Heidelberg New York, pp 336–347Google Scholar
  8. Ellis JP, Milliman JD (1985) Calcium carbonate suspended in Arabian Gulf and Red Sea waters: Biogenic and detrital, not “chemogenic”. J Sediment Petrol 55:805–808Google Scholar
  9. Emrich K, Ehhalt DH, Vogel JC (1970) Carbon fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371CrossRefGoogle Scholar
  10. Epstein S, Graf DL, Degens ET (1964) Oxygen isotope studies on the origin of dolomites. In: Craig H, Miller SL, Wasserburg GJ (eds) Isotopic and cosmic chemistry. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 169–180Google Scholar
  11. Fritz P, Smith DGW (1970) The isotopic composition of secondary dolomites. Geochim Cosmochim Acta 43:1161–1173CrossRefGoogle Scholar
  12. Gevirtz JL, Friedman GM (1966) Deep sea carbonate sediments of the Red Sea and their implications on marine lithification. J Sediment Petrol 36:143–152Google Scholar
  13. Herman YR (1965) Etudes des sédiments quaternaires de la Mer Rouge. PhD Theesis, Univ Paris. Masson, Paris, pp 341–415Google Scholar
  14. Irwin H (1980) Early diagenetic carbonate precipitation and pore fluid migration in the Kimmeridge clay of Dorset, England. Sedimentology 27:577–591CrossRefGoogle Scholar
  15. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature (London) 269:209–213CrossRefGoogle Scholar
  16. Kharaka YK, Berry AF, Friedman I (1973) Isotopic composition of oil-field brines from Kettleman North Dome, California and their geological implications. Geochim Cosmochim Acta 37:1899–1908CrossRefGoogle Scholar
  17. Keeling CD (1958) The concentration and isotopic abundance of carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334CrossRefGoogle Scholar
  18. Kelts KR, McKenzie JA (1980) Formation of deep sea dolomites in anoxic diatomaceous oozes. 26th Int Geolical Congr, Paris. Fr (Abstr)Google Scholar
  19. Land LS (1980) The isotope and trace element geochemistry of dolomite: the state of the art. Spec Publ Soc Econ Paleontol Mineral 28:87–110Google Scholar
  20. Matthews A, Katz A (1977) Oxygen isotope fractionations during the dolomitization of calcium carbonate. Geochim Cosmochim Acta 41:1431–1438CrossRefGoogle Scholar
  21. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  22. McKenzie JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkas of Abu Dhabi. U. A. E.: a stable tope study. J Geol 89:185–198CrossRefGoogle Scholar
  23. Milliman JD, Ross DA, Ku T (1969) Precipitation and lithification of deep sea carbonates in the Red Sea. J Sediment Petrol 39, 2:724–736Google Scholar
  24. Müller G, Gastner M (1971) The carbonate bombe, a simple device for the determination of the carbonate content in sediments, soils and other materials. N Jahrb Mineral 10:466–469Google Scholar
  25. Northrop DA, Clayton RN (1966) Oxygen-isotope fractionation in systems containing dolomite. J Geol 74:174–196CrossRefGoogle Scholar
  26. O’Neil, JR, Epstein S (1966) Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science 152:198–201CrossRefGoogle Scholar
  27. Pautot G, Guennoc P, Contelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature (London) 310:133–136CrossRefGoogle Scholar
  28. Pisciotto KA, Mahoney JJ (1981) Isotopic survey of diagenetic carbonates. Deep Sea Drilling Project Leg 23. In: Yeats RS, Haq BU et al. (eds) Init Rep Deep Sea Drill Proj 63. US Gov Print Off, Washington DC, pp 595–609Google Scholar
  29. Puchelt H, Laschek D (1984) Marine Erzvorkommen im Roten Meer. Fridericiana Z Univ Karlsruhe, vol 34Google Scholar
  30. Rossignol-Strick M (1987) Rainy periods and bottom water stagnation initiating brine accumulation and metal concentrations: 1. The late quaternary. Paleoceanography 2:379–394CrossRefGoogle Scholar
  31. Rubinson M, Clayton RN (1969) Carbon C-13 fractionation between aragonite and calcite. Geochim Cosmochim Acta 33:997–1002CrossRefGoogle Scholar
  32. Schoell M, Faber E (1978) New isotopic evidence for the origin of Red Sea brines. Nature 275:436–438CrossRefGoogle Scholar
  33. Schoell M, Stahl W (1972) The carbon isotopic composition and the concentration of dissolved anorganic carbon in the Atlantis II Deep brines, Red Sea. Earth Planet Sci Lett 15:206–211CrossRefGoogle Scholar
  34. Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279 and 282. In: Kennett JP, Houtz RE (eds) Init Rep Deep Sea Drill Proj 29. US Gov Print Off, Washington DC, pp 743–755Google Scholar
  35. Sharma T, Clayton RN (1965) Measurement of O-18/O-16 ratios of total oxygen of carbonates. Geochim Cosmochim Acta 29:1347–1353CrossRefGoogle Scholar
  36. Stoffers P, Botz R (1989) Carbonate Crusts in the Red Sea: Their Composition and Isotope Geochemistry In: Ittekott V, Kempe S, Michaelis W, Spitzy A, (Eds.) Facets of modern biogeochemistry, Festschrift for E T Degens Springer, Berlin Heidelberg New York (in press)Google Scholar
  37. Tarutani I, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996CrossRefGoogle Scholar
  38. Thunell RC, Locke SM, Williams DF (1988) Glacioeustatic sea-level control on the Red Sea salinity. Nature (London) 334:601–604CrossRefGoogle Scholar
  39. Wada H, Niitsuma N, Nagasawa K, Okada H (1982) Deep sea carbonate nodules from the Middle American Trench area off Mexico, Deep Sea Drilling Project Leg 66. In: Watkins JS, Moore JC et al: (eds) Init Rep Deep Sea Drill Proj 66. US Gov Print Off, Washington DC, pp 453–474Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • P. Stoffers
  • R. Botz
  • J. Scholten
    • 1
  1. 1.Geologisch-Paläontologisches Institut u. MuseumUniversität KielKielGermany

Personalised recommendations