Sediment Criteria Development

Contributions from Environmental Geochemistry to Water Quality Management
  • Ulrich Förstner
  • Wolfgang Ahlf
  • Wolfgang Calmano
  • Michael Kersten


The role of sediments as carriers and potential sources of contaminants is reviewed. A program of sediment studies will normally consist of a series of objectives of increasing complexity, each drawing part of its information from the preceding data base. The study of dated sediment cores has proven particulary useful as it provides a historical record of the various influences on the aquatic system by indicating both the natural background levels and the man-induced accumulation of pollutants over an extended period of time. Since adsorption of pollutants onto particles is a primary factor in determining the transport, deposition, reactivity, and potential toxicity of these materials, analytical methods should be related to the chemistry of the particle’s surface and/or to the pollutant species highly enriched on the surface.

New objectives regarding the improvement of water quality as well as problems with the resuspension and land deposition of dredged materials require a standardized assessment of sediment quality. Biological criteria integrate sediment characteristics and pollutant loads, while generally not indicating the cause of effects. With respect to chemical-numerical criteria immediate indications on biological effects are lacking; major advantages lie in their easy application and amendment to modeling approaches. Numerical approaches, on the one hand, are based on (1) accumulation; (2) pore water concentrations; (3) solid/liquid equilibrium partition (sediment/water and organism/water); and (4) elution properties of contaminants. The second component in an assessment scheme would include characteristics of the solid substrate, in particular, buffer capacity against pH-depression. At the present stage of criteria development we propose that the substrate properties should be classified on the basis of the carbonate and sulfide inventory, whereas the pollutant load is advantageously assessed by the accumulation rate multiplied with a toxicity factor for the respective substance.


Pore Water Sediment Quality Underlie Test System Biological Criterion Natural Background Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlf W, Munawar M (1988) Biological assessment of environmental impact of dredged material. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York Tokyo, pp 126–142Google Scholar
  2. Alderton DHM (1985) Sediments. In: Historical monitoring, MARC Tech Rep 31. Monitoring and Assessment Research Centre/Univ London, pp 1–95Google Scholar
  3. Anderson J, Birge W, Gentile J, Lake J, Rodgers J, Swartz R (1987) Biological effects, bioaccumulation, and ecotoxicolgy of sediment-associated chemicals. In: Dickson KL, Maki AW, Brungs WA (eds) Fate and effects of sediment-bound chemicals in aquatic systems. Pergamon, New York, pp 267–295Google Scholar
  4. Anon (1985) Sediment quality criteria development workshop, Nov 28–30, 1985. Battelle Washington Operations, RichtendGoogle Scholar
  5. Arikan A (1988) WATEQB — BASICA revision of WATEQF for IBM personal computers. Ground Water 26:222–227CrossRefGoogle Scholar
  6. Baes CF, Sharp RD (1983) A proposal for the estimation of soil leaching and leaching constants for use in assessment models. J Environ Qual 12:17–28CrossRefGoogle Scholar
  7. Baham J (1984) Prediction of ion activities in soil solutions: computer equilibrium modeling. Soil Sci Soc Am J 48:525–531CrossRefGoogle Scholar
  8. Bruynesteyn A, Duncan DW (1979) Determination of acid production potential of waste materials. Met Soc AIME Pap A-79–29, 10ppGoogle Scholar
  9. Bruynesteyn A, Hackl RP (1984) Evaluation of acid production potential of mining waste materials. Mineral Environ 4:5–8CrossRefGoogle Scholar
  10. Calmano W (1979) Untersuchungen über das Verhalten von Spurenelementen an Rheinund Mainschwebstoffen mit Hilfe radioanalytischer Methoden. Diss, TH DarmstadtGoogle Scholar
  11. Calmano W, Förstner U (1983) Chemical extraction of heavy metals in polluted river sediments in Central Europe. Sci Total Environ 28:77–90CrossRefGoogle Scholar
  12. Calmano W, Förstner U, Kersten M, Krause D (1986) Behaviour of dredged mud after stabilization with different additives. In: Assink JW, Van Den Brink WJ (eds) Contaminated soil. Nijhoff, Dordrecht, pp 737–746CrossRefGoogle Scholar
  13. Carignan R (1984) Interstitial water sampling by dialysis. Methodological notes. Limnol Oceanogr 29:667–670CrossRefGoogle Scholar
  14. Chapman G, Adam W, Lee H, Lyman W, Pavlou S, Wilhelm P (1987) Regulatory implications of contaminants associated with sediments. In: Dickson KL, Maki AW, Brungs WA (eds) Fate and effects of sediment-bound chemicals in aquatic systems. Pergamon, New York, pp413–425Google Scholar
  15. Chapman PM (1986) Sediment quality criteria from the sediment quality triad: an example. Environ Toxicol Chem 5:957–964CrossRefGoogle Scholar
  16. Chapman PM, Barrick RC, Neff JM, Swartz RC (1987) Four independent approaches to developing sediment quality criteria yield similar values for model contaminants. Environ Toxicol Chem 6:723–725Google Scholar
  17. Connor DJ, Connolly JP (1980) The effect of concentration of adsorbing solids on the partition coefficient. Water Res 14:1517–1523CrossRefGoogle Scholar
  18. Deutscher Verband für Wasserwirtschaft und Kulturbau (ed) (1988) Filtereigenschaften des Bodens gegenüber Schadstoffen, pt 1: Beurteilung der Fähigkeit von Böden zugeführte Schwermetalle zu immobilisieren. DVWK-Merkblätter zur Wasserwirtschaft, vol 212. Parey, Hamburg, 8 ppGoogle Scholar
  19. DiToro DM, Horzempa LM (1982) Reversible and restistant components of PCB adsorption-desorption: isotherms. Environ Sci Technol 16:594–602CrossRefGoogle Scholar
  20. Dutka BJ, Jones K, Kwan KK, Bailey H, Mclnnis R (1988) Use of microbial and toxicant screening tests for priority site selection of degraded areas in water bodies. Water Res 22:503–510CrossRefGoogle Scholar
  21. Duursma EK (1984) Problems of sediment sampling and conservation for radionuklide accumulation studies. In: Sediments and pollution in waterways. IAEA-TECDOC-302, Int Atomic Energy Agency, Vienna, pp 127–135Google Scholar
  22. Engler RM, Brannon JM, Rose J, Bigham G (1977) A practical selective extraction procedure for sediment characterization. In: Yen TF (ed) Chemistry of marine sediments. Ann Arbor Sci Publ, Ann Arbor, MI, pp 163–171Google Scholar
  23. Ferguson KD, Erickson PM (1988) Pre-mine prediction of acid mine drainage. In: Salomons W, Förstner U (eds) Environmental management of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York Tokyo, pp 24–43Google Scholar
  24. Förstner U, Kersten M (1988) Assessment of metal mobility in dredged material and mine waste by pore water chemistry and solid specication. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York Tokyo, pp 214–237Google Scholar
  25. Förstner U, Müller G (1974) Schwermetalle in Flüssen und Seen als Ausdruck der Umweltverschmutzung. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Golterman HL, Sly PG, Thomas RL (1983) Study of the relationship between water quality and sediment transport. Technical papers in hydrology 26. Unesco, Paris, 231 ppGoogle Scholar
  27. Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001CrossRefGoogle Scholar
  28. Ham RK, Anderson MA, Stegmann R, Stanforth R (1980) Die Entwicklung eines Auslaugtests für Industrieabfälle. Müll Abfall 12:212–220Google Scholar
  29. Herms U, Brümmer G (1978) Löslichkeit von Schwermetallen in Siedlungsabfällen und Böden in Abhängigkeit von pH-Wert, Redoxbedingungen und Stoffbestand. Mitt Dtsch Bodenkd Ges 27:23–43Google Scholar
  30. Herms U, Tent L (1982) Schwermetallgehalte im Hafenschlick sowie in landwirtschaftlich genutzten Hafenschlickspülfeldern im Raum Hamburg. Geol Jahrb F12:3–11Google Scholar
  31. Hesslein R (1976) An in-situ sampler for close interval pore water studies. Limnol Oceanogr 21:912–914CrossRefGoogle Scholar
  32. Höpner T (1989) Statusseminar Gütekriterien für Küstengewässer. Ergebnisse einer Literaturstudie und Kurzfassung der Referate. Arbeitsgruppe für Regionale Struktur- und Umweltforschung, OldenburgGoogle Scholar
  33. Honeyman BD, Santschi PH (1988) Metals in aquatic systems. Environ Sci Technol 22:862–871CrossRefGoogle Scholar
  34. Isaacson PJ, Frink CR (1984) Nonreversible sorption of phenolic compounds by sediment fractions: the role of sediment organic matter. Environ Sci Technol 18:43–48CrossRefGoogle Scholar
  35. Jackson DR, Garrett BC, Bishop TA (1984) Comparison of batch and column methods for assessing teachability of hazardous waste. Environ Sci Technol 18:668–673CrossRefGoogle Scholar
  36. Jenne EA, Kennedy VC, Burchard JM, Ball JW (1980) Sediment collection and processing for selective extraction and for total trace element analysis. In: Baker RA (ed) Contaminants and sediments, vol 2. Ann Arbor Sci Publ, Ann Arbor, MI, pp 169–191Google Scholar
  37. Jenne EA, DiToro DM, Allen HE, Zarba CS (1986) An activity-based model for developing sediment criteria for metals. In:Lester JN, Perry R, Sterritt RM (eds) Chemicals in the environment. Selper, London, pp 560–568Google Scholar
  38. Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10:833–846CrossRefGoogle Scholar
  39. Kersten M (1989) Mechanismus und Bilanz der Schwermetallfreisetzung aus einem Süßwasserwatt der Elbe. Diss, T Univ Hamburg-HarburgGoogle Scholar
  40. Kersten M, Förstner U (1986) Chemical fractionation of heavy metals in anoxie estuarine and coastal sediments. Water Sci Technol 18:121–130Google Scholar
  41. Kersten M, Förstner U (1987) Effect of sample pretreatment on the reliability of solid speciation data of heavy metals — implication for the study of diagenetic processes. Mar Chem 22:299–312CrossRefGoogle Scholar
  42. Kersten M, Förstner U, Calmano W, Ahlf W (1985) Freisetzung von Metallen bei der Oxidation von Schlämmen. Wasser 65:21–35Google Scholar
  43. Keyser TR, Natusch DFS, Evans CA Jr, Linton RW (1978) Characterizing the surface of environmental particles. Environ Sci Technol 12:768–773CrossRefGoogle Scholar
  44. Kiekens L, Cottenie A (1985) Principles of investigations on the mobility and plant uptake of heavy metals. In: Leschber R, Davis RD, L’Hermite P (eds) Chemical methods for assessing bio-available metals in sludges and soils. Elsevier, London New York Amsterdam, pp 32–47Google Scholar
  45. Lake JL, Rubinstein N, Pavignano S (1987) Predicting bioaccumulation: development of a simple partitioning model for use as a screening tool for regulating ocean disposal of waste. In: Dickson KL, Maki WA, Brungs WA (eds) Fate and effects of sediment-bound chemicals in aquatic systems. Pergamon, New York, pp 151–166Google Scholar
  46. Lewis FM, Voss CI, Rubin J (1987) Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: simulation methodology and applications. J Hydrol 90:81–115CrossRefGoogle Scholar
  47. Lion LW, Altman RS, Leckie JO (1982) Trace-metal adsorption characteristics of estuarine particulate matter: evaluation of contribution of Fe/Mn oxide and organic surface coatings. Environ Sci Technol 16:660–666CrossRefGoogle Scholar
  48. Long ER, Chapman PM (1985) A sediment quality triad. Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar Pollut Bull 16:405–415CrossRefGoogle Scholar
  49. Luoma SN, Davis JA (1983) Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar Chem 12:159–181CrossRefGoogle Scholar
  50. Maaß B, Miehlich G, Gröngröft A (1985) Untersuchungen zur Grundwassergefährdung durch Hafenschlick-Spülfelder. II Inhaltsstoffe in Spülfeldsedimenten und Porenwässern. Mitt Dtsch Bodenkd Ges 43/I:253–258Google Scholar
  51. Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16:274–278CrossRefGoogle Scholar
  52. Malins DC, McCain BB, Brown DW, Chan SL, Myers MS, Landahl JT, Prohaska PG, Friedman AJ, Rhodes LD, Burrows DG, Gronlund WD, Hodgins HO (1984) Chemical pollutants in sediments and diseases of bottom-dwelling fish in Puget Sound, Washington. Environ Sci Technol 18:705–713CrossRefGoogle Scholar
  53. McFarland VA (1984) Activity-based evaluation of potential bioaccumulation for sediments. In: Montgomery RL, Leach JW (eds) Dredging and dredged material disposal, vol 1. Soc Civil Eng, New York, pp 461–467Google Scholar
  54. Müller G (1977a) Schadstoff-Untersuchungen an datierten Sedimentkernen aus dem Bodensee. II Historische Entwicklung von Schwermetallen — Beziehung zur Entwicklung polycyclischer aromatischer Kohlenwasserstoffe. Z Naturforsch 32c:913–919Google Scholar
  55. Müller G (1977b) Schadstoff-Untersuchungen an datierten Sedimentkernen aus dem Bodensee. III Historische Entwicklung von N- und P-Verbindungen — Beziehung zur Entwicklung von Schwermetallen und polycyclischen aromatischen Kohlenwasserstoffen. Z Naturforsch 32c:920–925Google Scholar
  56. Müller G (1979) Schwermetalle in den Sedimenten des Rheins — Veränderungen seit 1971. Umschau 79:778–783Google Scholar
  57. Müller G (1981) Heavy metals and other pollutants in the environment. A chronology based on the analysis of dated sediments. In: Ernst WHO (ed) Heavy metals in the environment, Amsterdam. CEP, Edinburgh, pp 12–17Google Scholar
  58. Müller G (1983) Zur Chronologie des Schadstoffeintrags in Gewässer. Geowis Unserer Zeit 1:2–11Google Scholar
  59. Müller G (1985) Unseren Flüssen geht’s wieder besser. Bild Wiss 10/1985:76–97Google Scholar
  60. Müller G, Förstner U (1973) Cadmiumanreicherungen in Neckarfischen. Naturwissenschaften 60:258–259CrossRefGoogle Scholar
  61. Müller G, Förstner U (1975) Heavy metals in the Elbe and Rhine estuaries: mobilization or mixing effect? Environ Geol 1:33–39CrossRefGoogle Scholar
  62. Müller G, Dominik J, Mangini A (1979a) Eutrophication changes sedimentation in part of Lake Constance. Naturwissenschaften 66:261–262CrossRefGoogle Scholar
  63. Müller G, Kanazawa A, Teshima S (1979b) Sedimentary record of fecal pollution in part of Lake Constance by coprostanol determination. Naturwissenschaften 66:520–521CrossRefGoogle Scholar
  64. Müller G, Dominik J, Reuther R, Malisch R, Schulte E, Acker L, Irion G (1980) Sedimentary record of environmental pollution in the western Baltic Sea. Naturwissenschaften 67:595–600CrossRefGoogle Scholar
  65. Oliver BG, Nicol KD (1982) Chlorobenzenes in sediments, water, and selected fish from Lakes Superior, Huron, Erie, and Ontario. Environ Sci Technol 16:532–536CrossRefGoogle Scholar
  66. Oliver BG (1984) Uptake of chlorinated contaminants from anthropogenically contaminated sediments by oligochaete worms. Can J Fish Aquat Sci 41:878–883CrossRefGoogle Scholar
  67. Patrick WH, Williams BG, Moraghan JT (1973) A simple system for contolling redox potential and pH in soil suspensions. Soil Sci Soc Am Proc 37:331–332CrossRefGoogle Scholar
  68. Reynoldson TB (1987) Interactions between sediment contaminants and benthic organisms. In: Thomas RL, Evans R, Hamilton A, Munawar M, Reynoldson TB, Sadar H (eds) Ecological effects of in situ sediment contaminants. Hydrobiologia 149:53–66Google Scholar
  69. Sauerbeck D, Styperek P (1985) Evaluation of chemical methods for assessing the Cd and Zn availability from different soils and sources. In: Leschber R, Davis RD, L’Hermite P (eds) Chemical methods for assessing bio-available metals in sludges and soils. Elsevier, London New York Amsterdam, pp 49–66Google Scholar
  70. Schoer J, Förstner U (1984) Chemical forms of artificial radionuclides and their stable counterparts in sediments. Proc Int Conf Environmental contamination, London. CEP, Edinburgh, pp 738–745Google Scholar
  71. Schoer J, Förstner U (1987) Abschätzung der Langzeitbelastung von Grundwasser durch die Ablagerung metallhaltiger Feststoffe. Wasser 69:23–32Google Scholar
  72. Schwedhelm E, Vollmer M, Kersten M (1988) Bestimmung von Konzentrationsgradienten gelöster Schwermetalle an der Sediment/-Wasser-Grenzfläche mit Hilfe der Dialysetechnik. Fres Z Anal Chem 332:756–763CrossRefGoogle Scholar
  73. Shea D (1988) Developing national sediment quality criteria — equilibrium partitioning of contaminants as a means of evaluating sediment quality criteria. Environ Sci Technol 22:1256–1261CrossRefGoogle Scholar
  74. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and mine soils. US Environ Protec Ag Rep EPA-600/2-78-054Google Scholar
  75. Tent L (1982) Auswirkungen der Schwermetallbelastung von Tidegewässern am Beispiel der Elbe. Wasserwirtschaft 72:60–62Google Scholar
  76. Tent L (1987) Contaminated sediments in the Elbe estuary: ecological and economic problems for the Port of Hamburg. In: Thomas RL et al. (eds) Ecological effects of insitu sediment contaminants. Hydrobiologia 149:189–199Google Scholar
  77. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  78. Theis TL, Padgett LE (1983) Factors affecting the release of trace metals from municipal sludge ashes. J Water Pollut Control Fed 55:1271–1279Google Scholar
  79. UNESCO (ed) (1978) Water quality survey. A guide for the collection and interpretation of water quality data. Studies and reports in hydrology, vol 23. Unesco, Paris, 350 ppGoogle Scholar
  80. US Environmental Protection Agency (ed) (1984) Background and review document on the development of sediment criteria. EPA Contract 68-01-6388. JRB Associates, McLean/VirgGoogle Scholar
  81. Van der Sloot HA, Piepers O, Kok A (1984) A standard leaching test for combustion residues. Shell BEOP-31. Studiegroep Ontwikkeling Standaard Uitloogtesten Verbrandingsresiduen, Petten/Netherlands.Google Scholar
  82. Van Veen HJ, Stortelder PBM (1988) Research on contaminated sediments in the Netherlands. In: Wolf K, Van Den Brink WJ, Colon FJ (eds) Contaminated soil 88. Kluwer, Dordrecht, pp 1263–1275Google Scholar
  83. Voice TC, Rice CP, Weber WJ Jr (1983) Effects of solids concentrations on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ Sci Technol 17:513–518CrossRefGoogle Scholar
  84. Walker JD (1988) Effects on microorganisms. J Water Pollut Control Fed 60:1106–1121Google Scholar
  85. Watson PG, Frickers PE, Goodchild CM (1985) Spatial and seasonal variations in the chemistry of sediment interstitial waters in the Tamar estuary. Estuar Coast Shelf Sci 21:105–119CrossRefGoogle Scholar
  86. WHO (ed) (1978) GEMS — global environmental monitoring system. WHO, Geneva, 313ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Ulrich Förstner
  • Wolfgang Ahlf
  • Wolfgang Calmano
  • Michael Kersten
    • 1
  1. 1.Arbeitsbereich UmweltschutztechnikTechnische Universität Hamburg-HarburgHamburg 90Germany

Personalised recommendations