Skip to main content

Microbial Modification of Sedimentary Surface Structures

  • Chapter

Abstract

In coastal salterns, physical forces cause the upfolding of surface layers. Gelsticky, microfibrous substrates produced by microbes interfere with these processes. Results are folds and buckles, which differ from abiogenic tepee structures. The modified tepees are termed petees. Basing upon the over-thrusting mechanism involved, petees are classified into three types: (1) alpha-petees are buckles or folds which initially derive from subsurficial gas pressure, wind or water friction. In alpha-petees, mineral crystallization is either non-existent or initial, crests remain closed and rounded. (2) Beta-petees are advanced stages of alpha-petees with ruptured crests. Mineral crystallization takes place in the whole field of preformed folds, buckles and interspaces. Alpha- and beta-petees can be arranged irregulary or as parallel folds. (3) Gamma-petees are folds around polygons, formed in coherent biogenic surface layers. Their crests are sometimes rounded, but more often ruptured. Gamma-petees are visually closest to tepees and evolve from the same process which is lateral expansion of surface crusts by crystallization pressure.

Within the peritidal zone, petee environments range between subtidal and highest supratidal areas: alpha-petees may already develop in subtidal lagoons and reefs. Gypsum-encrusted beta- and gamma-petees rather indicate intertidal and lower supratidal exposure, and tepees finally the relatively highest topography where microbial mats are excluded.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JE, Frenzel HN (1950) Capitan barrier reef, Texas and New Mexico. J Geol 58:289–312

    Article  Google Scholar 

  • Arakel AV (1980) Genesis and diagenesis of Holocene evaporitic sediments in Hutt and Leeman lagoons, Western Australia. J Sediment Petrol 50:1305–1326

    Google Scholar 

  • Assereto RLAM, Kendall CGSt (1977) Nature, origin and classification of peritidal tepee structures and related breccias. Sedimentology 24:153–210

    Article  Google Scholar 

  • Brock TD (1976) Environmental microbiology of living stromatolites. In: Walter MR (ed) Developments in sedimentology, vol 20: Stromatolites. Elsevier, Amsterdam, pp 141–148

    Google Scholar 

  • Busson G (1988) Evaporites et hydrocarbures. Sci Terre 55:139pp

    Google Scholar 

  • Busson G, Perthuisot JP (1977) Interêt de la Sebkha el Melah (Sud-Tunisie) pour l’interprétation des séries évaporitiques anciennes. Sediment Geol 19:139–164

    Article  Google Scholar 

  • Cody RD, Cody AM (1988) Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J Sediment Petrol 58:247–255

    Google Scholar 

  • Cohen Y, Krumbein WE, Goldberg M, Shilo M (1977a) Solar Lake (Sinai) 1 physical and chemical limnology. Limnol Oceanogr 22:597–608

    Article  Google Scholar 

  • Cohen Y, Krumbein WE, Shilo M (1977b) Solar Lake (Sinai) 2 Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22:609–620

    Article  Google Scholar 

  • Dean WE, Anderson RY (1978) Salinity cycles: evidence for subaqueous deposition of Castile Formation and lower part of Salado Formation, Delaware Basin, Texas and New Mexico. N Mex Bur Mines Mineral Resourc Circ 159:15–20

    Google Scholar 

  • Decima A, McKenzie JA, Schreiber BC (1988) The origin of “evaporative” limestones: an example from the Messinian of Sicily (Italy). J Sediment Petrol 58:256–272

    Google Scholar 

  • Dunlop JSR, Muir MD, Milne VA, Groves DI (1978) A new microfossil assemblage from the Archaean of Western Australia. Nature (London) 274:676–678

    Article  Google Scholar 

  • Friedman GM (1978) Depositional environments of evaporite deposits. In: Dean WE, Schreiber BC (eds) SEPM short course 4, Oklahoma City 1978, pp 177–188

    Google Scholar 

  • Friedman GM, Krumbein WE (1985) Hypersaline écosystemes — the Gavish Sabkha. Ecological studies, vol 53. Springer, Berlin Heidelberg New York Tokyo, pp 484

    Google Scholar 

  • Gavish E, Krumbein WE, Halevy J (1985) Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline écosystemes — the Gavish Sabkha. Ecological studies, vol 53. Springer, Berlin Heidelberg New York Tokyo, pp 186–217

    Google Scholar 

  • Gerdes G, Krumbein WE (1987) Biolaminated deposits. Lecture notes in earth sciences, vol 9. Springer, Berlin Heidelberg New York Tokyo, 183 pp

    Google Scholar 

  • Gerdes G, Krumbein WE, Holtkamp EM (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystemes — the Gavish Sabkha. Ecological studies, vol 53. Springer, Berlin Heidelberg New York Tokyo, pp 238–266

    Google Scholar 

  • Giani D, Giani L, Cohen Y, Krumbein WE (1984) Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiol Lett 25:219–224

    Article  Google Scholar 

  • Gierloff-Emden HG (1981) Die Salzgartenlandschaft “Marais Salantes” der Guérande bei Le Croisic. Mitt Geogr Ges München 66:115–139

    Google Scholar 

  • Herrmann AG, Knake D, Schneider J, Peters H (1973) Geochemistry of modern seawater and brines from salt pans: main components and bromine distribution. Contrib Mineral Petrol 40:1–24

    Article  Google Scholar 

  • Holtkamp E (1985) The microbial mats of the Gavish Sabkha (Sinai). Diss, Univ Oldenburg, 151 pp

    Google Scholar 

  • Horodyski RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, Mexico: comparison with Proterozoic stromatolites. J Sediment Petrol 47:1305–1320

    Google Scholar 

  • Kalkowsky E (1908) Oolith and Stromatolith im norddeutschen Buntsandstein. Z Dtsch Geol Ges 60:68–125

    Google Scholar 

  • Kendall CGSt, Warren JK (1987) A review of the origin and setting of tepees and their associated fabrics. Sedimentology 34:1007–1027

    Article  Google Scholar 

  • Krumbein WE (1979) Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1:139–203

    Article  Google Scholar 

  • Krumbein WE (1986) Biotransfer of minerals by microbes and microbial mats. In: Lead-beater BSC, Riding R (eds) Biomineralization in lower plants and animals. Univ Press, Oxford, pp 55–72

    Google Scholar 

  • Krumbein WE (1987) Das Farbstreifensandwatt: Bau, Struktur und Erdgeschichte von Mikrobenmatten. In: Gerdes G, Krumbein WE, Reineck HE (eds) Mellum — Portrait einer Insel. Kramer, Frankfurt am Main, pp 170–187

    Google Scholar 

  • Krumbein WE, Buchholz H, Franke P, Giani D, Giele C, Wonneberger K (1979) O2 and H2S coexistence in stromatolites. A model for the origin of mineralogical lamination in stromatolites and banded iron formations. Naturwissenschaften 66:381–389

    Article  Google Scholar 

  • Métayer C (1980) Le sel guérandais: analyses chimiques et qualités diététiques. In: Société des Sciences Naturelles de L’Ouest de la France (ed): Marais Salants. Soc Muséum d’Histoire Naturelle, Nantes, pp 73–76

    Google Scholar 

  • Pettijohn FJ, Potter PE (1964) Atlas and glossary of primary sedimentary structures. Springer, Berlin Heidelberg Göttingen, 370 pp

    Google Scholar 

  • Purser BH (1985) Coastal evaporite systems. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems — the Gavish Sabkha. Ecological studies, vol. 53. Springer, Berlin Heidelberg New York Tokyo, pp 72–102

    Chapter  Google Scholar 

  • Reeves CC Jr (1970) Origin, classification, and geologic history of caliche on the southern High Plains, Texas, southeastern New Mexico. J Geol 78:352–362

    Article  Google Scholar 

  • Rothe P (1986) Kanarische Inseln. Sammlung geologische Führer, vol 81. Bornträger, Berlin, 226 pp

    Google Scholar 

  • Rouchy JM (1988) Relations évaporities-hydrocarbures: l’association laminities-récifs-évaporities dans le Messinien de Méditerranée et ses enseignements. In: Busson G (ed) Evaporites et hydrocarbures. Sci Terre 55:43–70

    Google Scholar 

  • Sarg JF (1981) Petrology of the carbonate evaporite facies transition of the Seven Rivers Formation (Guadalupian, Permian) southeast New Mexico. J Sediment Petrol 51:73–95

    Google Scholar 

  • Schneider J, Herrmann AG (1980) Saltworks natural laboratories for microbiological and geochemical investigations during the evaporation of seawater. In: Coogan AH, Hauder L (eds) 5th Symp Salt. North Ohio Geol Soc, pp 371–381

    Google Scholar 

  • Shinn EA (1969) Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology 12:109–144

    Article  Google Scholar 

  • Shinn EA (1983) Tidal flat environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Am Assoc Petr Geol Mem 33:172–210

    Google Scholar 

  • Shinn EA (1986) Modern carbonate tidal flats: their diagnostic features. In: Hardie LA, Shinn EA (eds) Carbonate depositional environments, modern and ancient. Col School Mines Q 81:7–35

    Google Scholar 

  • Thomas JC, Geisler D (1982) Peuplements benthiques à cyanophcées des marais salants de Salin-de-Giraud (Sud de la France). Geol Méditerr 9:391–411

    Google Scholar 

  • Thompson RW (1968) Tidal flat sedimentation on the Colorado River Delta, northwestern Gulf of California. Geol Soc Am Mem 107:133

    Google Scholar 

  • Vai GB, Lucchi FR (1977) Algal crusts, autochthonous and clastic gypsum in a cannibalistic evaporite basin: a case history from the Messinian of northern Apennines. Sedimentology 24:211–244

    Article  Google Scholar 

  • Warren JK (1982) The hydrological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia. J Sediment Petrol 52:1171–1201

    Google Scholar 

  • Warren JK (1986) Shallow-water evaporitic environments and their source rock potential. J Sediment Petrol 56:442–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reineck, HE., Gerdes, G., Claes, M., Dunajtschik, K., Riege, H., Krumbein, W.E. (1990). Microbial Modification of Sedimentary Surface Structures. In: Heling, D., Rothe, P., Förstner, U., Stoffers, P. (eds) Sediments and Environmental Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75097-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75097-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75099-1

  • Online ISBN: 978-3-642-75097-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics