Skip to main content

A Fiberoptics-Based System for Integrated Monitoring of Cardiac Output, Intrathoracic Blood Volume, Extravascular Lung Water, O2 Saturation, and a-v Differences

  • Conference paper
Practical Applications of Fiberoptics in Critical Care Monitoring

Abstract

The development of intravascular fiberoptic reflection photometry by Polanyi and Hehir [33] has initiated a new area of research and monitoring technology. Using different measuring and reference wavelengths oxygen saturation or dye concentrations in blood can be derived continuously and precisely in streaming blood and without blood withdrawal [35]. In recent years the quantification of extra-vascular lung water (EVLW) with the combination of thermal- and dye dilution has been introduced for clinical use [20, 22]. Instead of blood withdrawal for analyzing dye concentrations extracorporeally fiberoptic reflection dye densitometry can be combined with thermodilution for the estimation of EVLW [31]. Thus one system allows the integrated monitoring of several parameters like arterial (SaO2) and mixed venous oxygen saturation (SvO2) and EVLW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aishima K, Takahashi S, Yoshitake J (1984) Clinical evaluation of continuous monitoring of mixed venous O2 saturation in critically ill patients. Fukuoka Acta Med 75: 445

    PubMed  CAS  Google Scholar 

  2. Arfors K-E, Malmberg P, Pavek K (1971) Conservation of thermal indicator in lung circulation. Cardiovasc Res 5: 530

    Article  PubMed  CAS  Google Scholar 

  3. Aschenbrenner G, Zimmermann G, Pfeiffer U, et al (1983) The accuracy of the thermo-dyetechnique in severe alveolar edema. European Surg Res 15/S1: 65

    Google Scholar 

  4. Baele PL, McMichan JC, Marsh M, et al (1982) Continuous monitoring of mixed venous O2 saturation in critically ill patients. Anesth Analg 61: 513

    Article  PubMed  CAS  Google Scholar 

  5. Bradley EC, Barr JW (1968) Determination of blood volume using indocyanine green dye. Life Sci 7: 1001

    Article  PubMed  CAS  Google Scholar 

  6. Carlile PV, Beckett RC, Gray BA (1986) Relationship between CO and transit times for dye and thermal indicators in central circulation. J Appl Physiol 60: 1363

    PubMed  CAS  Google Scholar 

  7. Carlile PV, Gray BA (1984) Type of lung injury influences the thermal-dye estimation of extra-vascular lung water. J Appl Physiol 57: 680

    PubMed  CAS  Google Scholar 

  8. De Bold AJ, Borenstein HB, Veress AT, et al (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28: 89

    Article  PubMed  Google Scholar 

  9. Elings VB (1984) Recent developments in indicator methods for measuring lung water. In: Lungenwasserbestimmung II — Klinische Bedeutung, Beitrage zur Anaesthesiologie und Intensivmedizin Vol. 6. Bergmann H, Gilly H, Steinbereithner K, et al (Eds). Vienna-Maudrich, pp 71–80

    Google Scholar 

  10. Fahey PJ, Harris K, Vanderwarf C (1984) Clinical experience with continuous monitoring of mixed venous O2 saturation in respiratory failure. Chest 86: 748

    Article  PubMed  CAS  Google Scholar 

  11. Fallon KD, Drake RE, Laine GA, et al (1985) Effect of cardiac output on extravascular lung water estimates made with the Edwards lung water computer. Anesthesiol 62: 505

    Article  CAS  Google Scholar 

  12. Frostell C, Blomqvist H, Hedenstierna G, et al (1986) Effects of prolonged surgical trauma on the extravascular lung water and central blood volume in the dog. Acta Anaesthesiol Scand 1986; 30: 309

    Article  CAS  Google Scholar 

  13. Gauer OH, Henry JB, Sieker HO (1961) Cardiac receptors and fluid volume control. Progress Cardiovasc Dis 4: 1

    Article  CAS  Google Scholar 

  14. Haneda K, Horiuchi T (1986) A method for measurement of total circulating blood volume using indocyanine green. Tohoku J Exp Med 148: 49

    Article  PubMed  CAS  Google Scholar 

  15. Hedenstierna G, Strandberg A, Brismar B, et al (1985) Functional residual capacity, thoracoabdominal dimensions, and central blood volume during general anesthesia with muscle paralysis and mechanical ventilation. Anesthesiol 62: 247

    Article  CAS  Google Scholar 

  16. Jansen JRC, Versprille A (1986) Improvement of cardiac output estimation by the thermodilution method during mechanical ventilation. Intensive Care Med 12: 71

    Article  PubMed  CAS  Google Scholar 

  17. Kay HR, Afshari M, Barash P, et al (1983) Measurement of ejection fraction by thermal dilution techniques. J Surg Res 34: 337

    Article  PubMed  CAS  Google Scholar 

  18. Kholoussy AM, Pollack D, Matsumoto T (1984) Prognostic significance of indocyanine green clearance in critically ill surgical patients. Crit Care 12: 115

    Article  CAS  Google Scholar 

  19. Leevy CM, Stein SW, Cherrick GR, Davidson CS (1959) Indocyanine green clearance. A test of liver excretory function. Clin Res 7: 290

    Google Scholar 

  20. Lewis FR, Elings VB (1978) Microprocessor determination of lung water using thermal-green dye double indicator dilution. Surg Forum 29: 182

    PubMed  Google Scholar 

  21. Lewis FR, Elings VB, Hill SL, et al (1982) The measurement of extravascular lung water by thermal-green dye indicator dilution. Ann N Y Acad Sci 384: 394

    Article  PubMed  CAS  Google Scholar 

  22. Lewis FR, Elings VB, Sturm JA (1979) Bedside measurement of lung water. J Surg Res 27: 250

    Article  PubMed  CAS  Google Scholar 

  23. Maruschak GF, Schauble JF (1985) Limitations of thermodilution ejection fraction: Degradation of frequency response by catheter mounting of fast-response thermistors. Crit Care 13: 679

    Article  CAS  Google Scholar 

  24. Mattea EJ, Paruta AN, Worthen LR (1979) Sterility of pre-filled syringes for thermal dilution cardiac output. Am J Hosp Pharm 36: 1156

    PubMed  CAS  Google Scholar 

  25. Meier P, Zierler KL (1954) On the theory of indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6: 731

    PubMed  CAS  Google Scholar 

  26. Newman EV, Merrell M, Genecin A, et al (1951) The dye dilution method for describing the central circulation: an analysis of factors shaping the time-concentration curves. Circulation 4: 735

    PubMed  CAS  Google Scholar 

  27. Pfeiffer UJ, Aschenbrenner G, Kolb E, et al (1986) Intrathoracic blood volume is a useful guide for volume substitution in intensive care patients. Chir Forum 203

    Google Scholar 

  28. Pfeiffer UJ, Aschenbrenner G, Zimmermann G, et al (1985) Intrathoracic blood volume is a sensitive guide for adequate infusion therapy. Anaesthesist 34 Suppl: 368

    Google Scholar 

  29. Pfeiffer UJ, Birk M, Aschenbrenner G, Blumel G (1982) The system for quantification of thermal-dye extravascular lung water. In: Computers in critical care and pulmonary medicine, vol 2. Prakash O (Ed). London, Plenum Publishing, pp 123–125

    Google Scholar 

  30. Pfeiffer UJ, Birk M, Blumel G (1979) Ein vollautomatischer Thermodilutionsinjektor. Biomed Techn 24: 60

    Article  Google Scholar 

  31. Pfeiffer UJ, Birk M, Strigl R, et al (1980) Methodik zur Messung von physiologischen Veränderungen unter Fenoterol und Verapamil: Experimentelle Studie zur Entstehung des Lungenödems unter Tokolyse I. Z Geburtsh Perinat 184: 94

    CAS  Google Scholar 

  32. Pfeiffer UJ, Zimmermann G (1984) Fehlermöglickeiten und Grenzen der Lungenwasserbestimmung mit der Thermo-Dye-Technik. In: Lungenwasserbestimmung II — Klinische Bedeutung, Beiträge zur Anaesthesiologie und Intensivmedizin vol 6. Bergmann H, Gilly H, Steinbereithner K, et al (Eds). Vienna-Maudrich, 1984, pp 81–104

    Google Scholar 

  33. Polanyi ML, Hehir MR (1962) In vivo oximeter with fast dynamic response. Rev Sci Instruments 33: 1050

    Article  CAS  Google Scholar 

  34. Rice DL, Miller WC (1981) Flow-dependence of extravascular thermal volume as an index of pulmonary edema. Intensive Care Med 7: 269

    Article  PubMed  CAS  Google Scholar 

  35. Volz RJ, Christensen DA (1979) A neonatal fiberoptic probe for oximetry and dye curves. IEEE Transbiomed Eng 26: 416

    Article  CAS  Google Scholar 

  36. Wellhöfer H, Classen M, Perker M, et al (1986) PEEP-induced changes of PCWP, prepulmonary and total intrathoracic blood volume in anesthetized dogs. Intensive Care Med 12 Suppl: 208

    Google Scholar 

  37. Zeravik J, Pfeiffer U J, Efficacy of high frequency ventilation combined with volume controlled ventilation in dependency of extravascular lung water. Acta Anaesthesiol Scand 1989: 33: 568–574

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfeiffer, U.J. et al. (1990). A Fiberoptics-Based System for Integrated Monitoring of Cardiac Output, Intrathoracic Blood Volume, Extravascular Lung Water, O2 Saturation, and a-v Differences. In: Lewis, F.R., Pfeiffer, U.J. (eds) Practical Applications of Fiberoptics in Critical Care Monitoring. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75086-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75086-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51718-4

  • Online ISBN: 978-3-642-75086-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics