Skip to main content

In-vitro-Studien zur destabilisierenden Wirkung lyophilisierter Saccharomyces cerevisiae Hansen CBS 5926-Zellen auf Enterobakterien. Läβt sich diese Eigenschaft biochemisch erklären?

  • Conference paper
Ökosystem Darm

Zusammenfassung

Die Enterobacteriaceae sind von ihren Substratansprüchen her eine recht uneinheitliche Gruppe: man findet sie auf Pflanzen, im Boden, in Gewässern, Abwässern, Lebensmitteln u. ä. Ihr gehören aber auch die wichtigsten fakultativ anaeroben Mikroorganismen der Darmflora des Menschen und der Tiere an. Neben dem Darmtrakt besiedeln sie auch Harn- und Gallenwege, Bauchraum oder Respirationstrakt, wo sie u.U. zu eitrigen Entzündungen führen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arnoldi J, Böckeler W, Vögtle-Junkert U (im Druck) Die Kinetik peroral aufgenommener ZN65-markierter Saccharomyces cerevisiae-Keime im Rattenorganismus. Mitt Österr Ges Trop Med Parasitol

    Google Scholar 

  2. Ballou CE (1982) Yeast cell wall and cell surface. In: Strathern JN, Jones EW, Broath JR (eds) The molecular biology of the yeast saccharomyces II, Cold Spring Harbour Laboratory. USA

    Google Scholar 

  3. Böckeler W, Dreyer HP, Sass W (1986) Elektronenmikroskopische Darstellungen von Saccharomyces cerevisiae in der Ratte. GIT [Suppl] 6:7376

    Google Scholar 

  4. Brandis H, Pulverer G (1988) Lehrbuch der Medizinischen Mikrobiologie, 6. Aufl. Fischer, Stuttgart New York

    Google Scholar 

  5. Brugier S, Patte F (1975) Antagonisme in vitro entre l’ultralevure et differents germes bacteriens. Med (Paris) 45:38

    Google Scholar 

  6. Byrd JC, Tarentino AL, Maley F, Atkinson PH, Trimble RB (1982) Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing. J Biol Chem 257/24:146

    Google Scholar 

  7. Dunlop PC, Meyer GM, Ban D, Roon RJ (1978) Characterization of two forms of asparaginase in saccharomyces cerevisiae. J Biol Chem 253:1297

    PubMed  CAS  Google Scholar 

  8. Eshdat Y, Speth V, Jann K (1981) Participation of pili and cell wall adhesion in the yeast agglutination activity of Escherichia coli. Infect Immun 34/3:980–6

    PubMed  CAS  Google Scholar 

  9. Field C, Schekman R (1980) Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae. J Cell Biol 86/1:123–8

    Article  PubMed  CAS  Google Scholar 

  10. Firon N, Ofek I, Scharon N (1983) Carbohydrate specifity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium. Carbohydr Res 120:235–49

    Article  PubMed  CAS  Google Scholar 

  11. Gascon S, Lampen JO (1968) Comparative study of the properties of the purified internal and external invertases of yeast. J Biol Chem 243:1573

    PubMed  CAS  Google Scholar 

  12. Jann K, Schmidt G, Blumenstock E, Vosbeck K (1981) Escherichia coli adhesion to Saccharomyces cerevisiae and mammalian cells: role of piliation and surface hydro- phobicity. Infect Immun 32/2:484–9

    PubMed  CAS  Google Scholar 

  13. Jelinek-Kelly S, Akiyama T, Saunier B, Tkacz JS, Herscovics A (1985) Characterization of a specific alpha-mannosidase involved in oligosaccharide processing. J Biol Chem 260/4:2253–7

    PubMed  CAS  Google Scholar 

  14. Kew OM, Douglas HC (1976) Genetic co-regulation of galactose and melibiose utilization in Saccharomyces. J Bacteriol 125:33

    PubMed  CAS  Google Scholar 

  15. Koch Y, Rademacher KH (1980) Chemical and enzymatic changes in the cell walls of Candida albicans and Saccharomyces cerevisiae by scanning electron microscopy. Can J Microbiol 26/8:965–70

    Article  PubMed  CAS  Google Scholar 

  16. Kozulic B, Barbaric S, Ries B, Mildner P (1984) Study of the carbohydrate part of yeast acid phosphatase. Biochem Biophys Res Commun 122/3:1083–90

    Article  PubMed  CAS  Google Scholar 

  17. Lewenstein A, Frigerio G, Moroni M (1979) Biological properties of streptococcus faecium SF 68, A new approach for the treatment of diarrheal diseases. Curr Ther Res 26:967–81

    CAS  Google Scholar 

  18. Makower M, Bevan EA (1963) The inheritance of a killer character in yeast (Saccharomyces cerevisiae). Proc Int Congr Genet XI 1:202

    Google Scholar 

  19. Matile P, Cortat M, Wiemken A, Frey-Wysling A (1971) Isolation of glucanase- containing particles from budding Saccharomyces cerevisiae. Proc Natl Acad Sci 68:636

    Article  PubMed  CAS  Google Scholar 

  20. Middelhoven WJ, Slingerland RJ, Notermans S (1988) The effect of growth conditions on production and excretion of extracellular antigens by three ascomycetous yeasts. Antonie Van Leeuwenhoek 54/3:235–44

    Article  PubMed  CAS  Google Scholar 

  21. Mirelman D, Altmann G, Eshdat Y (1980) Screening of bacterial isolates for man- nose-specific lectin activity by agglutination of yeasts. J Clin Microbiol 11/4:328–31

    PubMed  CAS  Google Scholar 

  22. Nagase T, Mikami T, Suzuki S, Suzuki M (1984) Pyrogenicity of yeast mannans in rabbits. Microbiol Immunol 28/6:651–7

    PubMed  CAS  Google Scholar 

  23. Nagase T, Mikami T, Suzuki S, Schuerch C, Suzuki M (1984) Lethal effect of neutral mannan fraction of bakers’ yeast in mice. Microbiol Immunol 28/9:997–1007

    PubMed  CAS  Google Scholar 

  24. Nelson RD, Herron MJ, McCormack RT, Gehrz RC (1984) Two mechanisms of inhibition of human lymphocyte proliferation by soluble yeast mannan polysaccharide. Infect Immun 43/3:1041–6

    PubMed  CAS  Google Scholar 

  25. Okawa Y, Okura Y, Hashimoto K, Matsumoto T, Suzuki S, Suzuki M (1982) Protective effect of D-mannan of bakers’ yeast against Staphylococcus aureus infection in mice. Carbohydr Res 108/2:328–34

    Article  PubMed  CAS  Google Scholar 

  26. Palfree R, Bussey H (1979) Yeast killer toxin: Purification and characterization of the protein toxin from Saccharomyces cerevisiae. Eur J Biochem 93:487

    Article  PubMed  CAS  Google Scholar 

  27. Pastor FI, Herrero E, Sentandreu R (1982) Metabolism of Saccharomyces cerevisiae envelope mannoproteins. Arch Microbiol 132/2:144–8

    Article  PubMed  CAS  Google Scholar 

  28. Rogers DT, Bevan EA (1978) Group classification of killer yeasts based on crossreactions between strains of different species and origin. J Gen Microbiol 105:199

    Google Scholar 

  29. Sanchez A, Nebreda AR, Villanueva JR, Villa TG (1983) Postsecretional modification of exo-1,3-β-D-glucanase from Saccharomyces cerevisiae. Biochem J 215/3:471–4

    PubMed  CAS  Google Scholar 

  30. Sass W, Dreyer HP, Böckeler W, Hamelmann H, Seifert J (1987) Prinzipien der Partikelresorption im Magen-Darm-Trakt. Z Gastroenterol 25:306–15

    PubMed  CAS  Google Scholar 

  31. Schekman R, Novick P (1982) The secretory process and yeast cell-surface assembly. In: Strathern JN, Jones EW, Broath JR (eds) The molecular biology of the yeast saccharomyces II. Cold Spring Harbour Laboratory. USA

    Google Scholar 

  32. Schuelke N, Schmid FX (1988) The stability of yeast invertase is not significantly influenced by glycosylation. J Biol Chem 263/18:8827–31

    CAS  Google Scholar 

  33. Scott JH, Schekman R (1980) Lyticase: Endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142:414

    PubMed  CAS  Google Scholar 

  34. Tkacz JS, Lampen JO (1973) Surface distribution of invertase on growing Saccharomyces cells. J Bacteriol 113:1073

    PubMed  CAS  Google Scholar 

  35. Wickner RB (1981) Killer system in saccharomyces cerevisiae. In: Strathern JN, Jones EW, Broath JR (eds) The molecular biology of the yeast saccharomyces I. Cold Spring Harbour Laboratory. USA

    Google Scholar 

  36. Wissmann E (1986) Medizinische Mikrobiologie, 6. Aufl. Thieme, Stuttgart New York

    Google Scholar 

  37. Woods DR; Bevan EA (1968) Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol 51:115

    PubMed  CAS  Google Scholar 

  38. Yamamoto T, Hiratani T, Hirata H, Imai M, Yamaguchi H (1986) Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Lett 197/1–2:50–4

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Böckeler, W., Thomas, G. (1989). In-vitro-Studien zur destabilisierenden Wirkung lyophilisierter Saccharomyces cerevisiae Hansen CBS 5926-Zellen auf Enterobakterien. Läβt sich diese Eigenschaft biochemisch erklären?. In: Müller, J., Ottenjann, R., Seifert, J. (eds) Ökosystem Darm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75075-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75075-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51707-8

  • Online ISBN: 978-3-642-75075-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics