Importance of Indirect Calorimetry for the Nutrition of Intensive Care Patients

  • M. Adolph
  • J. Eckart
Conference paper


Elliott and Alberti 1983 [22] investigated in great detail the direction and extent of different hormonal changes after trauma and operation and their influence on intermediary metabolism. Their results are summarized in Table 1 and show that most hormones whose levels are increased after trauma, such as catecholamines, Cortisol, glucagon and vasopressin, have a markedly catabolic effect. The growth hormone shows a catabolic influence on carbohydrate and fat metabolism as well, but it stimulates protein synthesis. Only insulin has a totally anabolic effect. The presence of high levels of counterregulatory hormones on the other hand leads to protein degradation, glycolysis, gluconeogenesis and lipolysis.


Continuous Positive Airway Pressure Septic Patient Total Parenteral Nutrition Respiratory Quotient Indirect Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adolph M (1985) Umsatzmessungen bei beatmeten Patienten. In: Ahnefeld FW, Hartig W, Holm E, Kleinberger G (eds) Zucksehwerdt, Munich (Klinische Ernährung, vol 19)Google Scholar
  2. 2.
    Adolph M, Eckart J (1982) Messung des Energiebedarfs durch die indirekte Kalorimetrie. In: Kleinberger G, Eckart J (eds) Der Energiebedarf und seine Deckung. Zuckschwerdt, Munich (Klinische Ernährung, vol 7) pp 1–30Google Scholar
  3. 3.
    Bässler KH (1982) Basaler Energiestoffwechsel und seine physiologischen Varianten. In: Kleinberger G, Eckart J (eds) Der Energiebedarf und seine Deckung. Zuckschwerdt, München, (Klinische Ernährung, vol 7) pp 89–102Google Scholar
  4. 4.
    Behrendt W (1986) Kontinuierliche Energieumsatzmessung und ihre Bedeutung für die parenterale Ernährungstherapie. In: Melichar G, Kalff G, Müller FG (eds) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislauf und Stoffwechsel. Karger, Basel, pp 152–163 (Beiträge zur Intensiv- und Notfallmedizin, vol 4)Google Scholar
  5. 5.
    Behrendt W, Kalff G, Giani G, Minale C, Barsnik F (1985) Kontinuierliche Messung der Sauerstoffaufnahme mit den Engström Metabolie Computer. Infusionstherapie 12:153 –160Google Scholar
  6. 6.
    Berkson J, Boothby WM (1936) Studies of the energy metabolism of normal individuals. A comparison of the estimation of basal metabolism from (1) a linear formulas and (2) “surface area”. Am J Physiol 116:485–494Google Scholar
  7. 7.
    Bessey PQ (1986) Parenteral nutrition and trauma. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition, vol 2. Saunders, Philadelphia, pp 471–488Google Scholar
  8. 8.
    Boothby WM, Berkson J, Dunn HL (1936) Studies of the energy metabolism of normal individuals: standard for basal metabolism with nomogrammi for clinical application. Am J Physiol 116:468–484Google Scholar
  9. 9.
    Braun U, Turner E (1987) Die Bedeutung der indirekten Kalorimetrie als diagnostisches Verfahren der Intensivmedizin. In: Eckart J (ed) Intensivmedizin und Anästhesiologie; Beiträge zur Intensiv- und Notfallmedizin, vol 5. Karger, Basel, pp 140–150Google Scholar
  10. 10.
    Brown R, Gross E, Little RA (1984) Whole body oxygen consumption and anthropometry. Clin Nutr 3:11–16CrossRefGoogle Scholar
  11. 11.
    Carlsson C, Carlsson L (1986) Physical conditions for measuring oxygen consumption and carbon dioxide production. In: Melichar G, Kalff G, Müller FG (eds) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislauf und Stoffwechsel. Karger, Basel, pp 120–125 (Beiträge zur Intensiv- und Notfallmedizin, vol 4)Google Scholar
  12. 12.
    Carlsson M, Nordenström J, Hedenstierna G (1984) Clinical implications of continuous measurement of energy expenditure in mechanically ventilated patients. Clin Nutr 3:103–110PubMedGoogle Scholar
  13. 13.
    Clifton GL, Robertson CS, Grossmann RG (1984) The metabolic response to severe head injury. J Neurosurg 60:687–696PubMedCrossRefGoogle Scholar
  14. 14.
    Crowley LV, Seifter E, Kriss P, Rettura G, Nakas K, Levenson SM (1977) Effects of environmental temperature and femoral fracture on wound healing in rats. J Trauma 17:436–445PubMedCrossRefGoogle Scholar
  15. 15.
    Cuthbertson DP, Dell GS, Smith CM, Tilstone WJ (1972) Metabolism after injury. I: Effects of severity, nutrition and environmental temperature on protein, potassium, zinc and creatinine. Br J Surg 59:68–79CrossRefGoogle Scholar
  16. 16.
    Daly JM, Heymsfield SB, Head CA, Harvey LP, Nixon DW, Katzeff H, Grossmann GD (1985) Human energy requirements: overestimation by widely used prediction equation. Am J Clin Nutr 42:1170–1174PubMedGoogle Scholar
  17. 17.
    Damask MC, Askanazi J, Weisman C, Elwyn DH, Kinney JM (1983) Artifacts in measurement of resting energy expenditure. Crit Care Med 11:750–752PubMedCrossRefGoogle Scholar
  18. 18.
    Dempsey DT, Guenter P, Mullen JL, Fairman R, Crosby LO, Spielmann G, Gennarelli T (1985) Energy expenditure in acute trauma to the head with and without barbiturate therapy. Surg Gynecol Obstet 160:128–134PubMedGoogle Scholar
  19. 19.
    Eckart J, Adolph M (1980) Messung des Energiebedarfs und der Verwertung zugeführter Energieträger. In: Eckart J, Kleinberger G, Lochs H (eds) Grundlagen und Praxis der Ernährungstherapie. Zuckschwerdt, Munich, pp 31 – 67 (Klinische Ernährung, vol 3)Google Scholar
  20. 20.
    Eckart J, Neeser G, Adolph M (1986) Optimierung von Energie- und Substratzufuhr unter dem Einfluß neuer Meßverfahren. In: Melichar G, Kalff G, Müller FG (eds) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislaufund Stoffwechsel. Karger, Basel, pp 93–119 (Beiträge zur Intensiv- und Notfallmedizin, vol 4)Google Scholar
  21. 21.
    Elia M, Livesey G (1988) Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 47:591–607PubMedGoogle Scholar
  22. 22.
    Elliott M, Alberti KGMM (1983) The horomonal and metabolic response to surgery and trauma. In: Kleinberger G, Deutsch E (eds) New aspects of typical nutrition. Karger, Basel, pp 247–270Google Scholar
  23. 23.
    Feenstra BWA, v. Lanschot JJB, Vermeij CG, Bruining HA (1986) Artifacts in the assessment of metabolic gas exchange. Intensive Care Med 12:312–316PubMedCrossRefGoogle Scholar
  24. 24.
    Feurer JD, Mullen JL (1986) Measurement of energy expenditure. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition. Saunders, Philadelphia, pp 224–236Google Scholar
  25. 25.
    Feurer JD, Crosby LO, Mullen JL (1984) Measured and predicted resting energy expenditure in clinically stable patients. Clin Nutr 3:27–34CrossRefGoogle Scholar
  26. 26.
    Fernandez Mondejar E, Duro Lombardo M, Perez de la Cruz AJ, Merida Mordes A, Torres Ruiz JM, Ferron Orihmela JA (1982) Variations in oxygen consumption and carbon dioxide production during parenteral nutrition. Intensive Care Med 8:169–172PubMedCrossRefGoogle Scholar
  27. 27.
    Fleisch A (1951) Le métabolisme basal standard et sa détermination au moyen du “Metabolaculator”. Helv Med Acta 18:23–44PubMedGoogle Scholar
  28. 28.
    Giovannini I, Boldrini G, Castaguato M, Namio G, Pittiniti J, Castiolini G (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. JPEN 7:226–230CrossRefGoogle Scholar
  29. 29.
    Goodwin CW (1986) Parenteral nutrition in thermal injuries. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition, vol 2. Saunders, Philadelphia, pp 489–507Google Scholar
  30. 30.
    Hansell DT, Richardson R, Davies JWL, Burns HJG (1987) Estimation of resting energy expenditure by anthropometry. Clin Nutr 6:51–57CrossRefGoogle Scholar
  31. 31.
    Harris JA, Benedict FG (1919) A biometric study of basal metabolism in man. Carnegie Institute of Washington, Washington DC (Publication number 297)Google Scholar
  32. 32.
    Kahn RC, Koslow M, Butcher S (1987) Metabolic studies in head injured patients (Abstract 42). JPEN 11:9Google Scholar
  33. 32a.
    Kahn RC, Koslow M, Butcher S (1987) Metabolic studies in head injured patients (Abstract 42). JPEN 11:9SGoogle Scholar
  34. 33.
    Kinney JM (1974) Energy requirements in injury and sepsis. Acta Anaesthesiol Scand[Suppl] 55:15–20CrossRefGoogle Scholar
  35. 34.
    Kinney JM (1980) The application of indirect calorimetry to clinical studies. In: Kinney JM (ed) Assessment of energy metabolism in health and disease; report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus, pp 42–48Google Scholar
  36. 35.
    Kinney JM, Morgan AP, Domingues FJ, Gildner KJ (1964) A method for continuous measurement of gas exchange and expired radioactivity in acutely ill patients. Metabolism 13:205–211PubMedCrossRefGoogle Scholar
  37. 36.
    Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541PubMedGoogle Scholar
  38. 37.
    Kleiber M (1975) The fire of life. An introduction of animal energetics. Krieger, New YorkGoogle Scholar
  39. 38.
    Kolpek JH, Ott L, Record KE, Rapp RP, Young AB (1987) Comparison of urinary urea nitrogen excretion and measured energy expenditure in spinal cord injury and non-steroid treated severe head trauma patients (Abstract 48) JPEN 11:10SGoogle Scholar
  40. 39.
    v. Lanschot JJB, Feenstra BWA, Vermeij CG, Bruining HA (1985) Determination of total energy expenditure in critically ill patients. Eur Surg Res 17/S1:93Google Scholar
  41. 40.
    v. Lanschot JJB, Feenstra BWA, Vermeij CG, Bruining HA (1986) Calculation vs measurement of total energy expenditure. Crit Care Med 14:981–985PubMedCrossRefGoogle Scholar
  42. 41.
    v. Lanschot JJB, Feenstra BWA, Looijen R, Vermeij CG, Bruing HA (1987) Total parenteral nutrition in critically ill surgical patients: fixed vs tailored caloric replacement. Intensive Care Med 13:46–51PubMedCrossRefGoogle Scholar
  43. 42.
    Livesey G, Elia M (1988) Estimation of energy expenditure, net carbohydrate utilization and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 47:608–628PubMedGoogle Scholar
  44. 43.
    Long CL, Crosby F, Geiger JW, Kinney JM (1976) Parenteral nutrition in the septic patient: nitrogen balance, limiting plasma amino acids and caloric to nitrogen ratios. Am J Clin Nutr 29:380–391PubMedGoogle Scholar
  45. 44.
    Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS (1979) Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN 3:452–456CrossRefGoogle Scholar
  46. 45.
    Mann S, Westenskow DR, Houtchens BA (1985) Measured and predicted caloric expenditure in the acutely ill. Crit Care Med 13:173–177PubMedCrossRefGoogle Scholar
  47. 46.
    Meriläinen PT (1987) Datex Deltratrac MBM 100. Description of the working principle and technical solutions. Manual No 874309Google Scholar
  48. 47.
    Nanni G, Siegel JH, Coleman B, Fader P, Cestiglione R (1984) Increased lipid fuel dependence in the critically ill septic patient. J Trauma 24:14–30PubMedCrossRefGoogle Scholar
  49. 48.
    Norton AC (1980) Portable equipment for gas exchange. In: Kinney JM, Buskirk ER, Munro HN (eds) Assessment of energy metabolism in health and disease: report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus, pp 36–41Google Scholar
  50. 49.
    Owen OE, Holup JL, D’Alessio DA et al (1987) A reappraisal of the caloric requirements of men. Am J Clin Nutr 46:875–885PubMedGoogle Scholar
  51. 50.
    Quebbeman EJ, Ansman RK (1982) Estimating energy requirements in patients receiving parenteral nutrition. Arch Surg 117:1281–1285PubMedGoogle Scholar
  52. 51.
    Rhodes JM, Caroli A, Dawson J, Hall S, Pincock A, Temple J, Elias E (1985) A controlled trial of fixed versus tailored caloric intake in patients receiving intravenous feeding after abdominal surgery. Clin Nutr 4:169–174PubMedCrossRefGoogle Scholar
  53. 52.
    Robertson CS, Grossman RS (1985) Energy expenditure in the head-injured patient. Crit Care Med 13:336 (abstr)Google Scholar
  54. 53.
    Roza AM, Shizgal HM (1984) The Harris-Benedict equation re-evaluated: resting energy requirements and the body cell mass. Am J Clin Nutr 40:168–182PubMedGoogle Scholar
  55. 54.
    Segal KR (1987) Comparison of indirect calorimetric measurements of resting energy expenditure with a ventilated hood, face mask and mouth piece. Am J Clin Nutr 45:1420–1423PubMedGoogle Scholar
  56. 55.
    Siegel JH (1986) Physiologic and nutritional implications of abnormal hormone-substrate relations and altered protein metabolism in human sepsis. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition, vol 2. Saunders, Philadelphia, pp 555–575Google Scholar
  57. 56.
    Spanier AH, Shizgal HM (1977) Caloric requirements of the critically ill patient receiving intravenous hyperalimentation. Am J Surg 133:99–105PubMedCrossRefGoogle Scholar
  58. 57.
    Stein TP (1985) Why measure the respiratory quotient of patients on total parenteral nutrition? J Am Coll Nutr 4:501–513PubMedGoogle Scholar
  59. 58.
    Turner WW, Ireton CS, Hunt JL, Baxter Ch R (1985) Predicting energy expenditures in burned patients. J Trauma 25:11–16PubMedCrossRefGoogle Scholar
  60. 59.
    Weissmann C, Damask MC, Askanazi J, Rosenbaum SH, Kinney JM (1985) Evaluation of a non-invasive method for the measurement of metabolic rate in humans. Clin Sci 69:135–141Google Scholar
  61. 60.
    Weissmann C, Kemper M, Damask MC (1984) Effect of routine intensive care interactions on metabolic rate. Chest 86:815–818CrossRefGoogle Scholar
  62. 61.
    Weissmann C, Kemper M, Elwyn DH, Askanazi J, Hyman AI, Kinney JM (1986) The energy expenditure of the mechanically ventilated critically ill patient — an analysis. Chest 89:254–259CrossRefGoogle Scholar
  63. 62.
    Westenskow D, Cutler C, Wallace W (1984) Instrumentation for monitoring gas exchange and metabolic rate in critically ill patients. Crit Care Med 12:183–187PubMedCrossRefGoogle Scholar
  64. 63.
    Wilmore DW (1977) The metabolic management of critically ill. Plenum Medical, New York, pp 34–36Google Scholar
  65. 64.
    Wilmore DW, Aulick LH (1978) Metabolic changes in burned patients. Surg Clin North Am 58:1173–1187PubMedGoogle Scholar
  66. 65.
    Wilmore DW, Long JM, Mason AD (1974) Catecholamines: mediators of the hypermetabolic response to thermal injury. Am Surg 180:653–669Google Scholar
  67. 66.
    Wilmore DW, Mason AD, Johnson DW, Pruitt BA (1975) Effect of ambient temperature on heat production and heat loss in burn patients. J Appi Physiol 38:593–597Google Scholar
  68. 67.
    Wilmore DW, Long JM, Mason AD, Pruitt BA (1976) Stress in surgical patients as a neurophysiologic reflex response. Surg Gynecol Obstet 142:257–269PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Adolph
  • J. Eckart

There are no affiliations available

Personalised recommendations