Advertisement

Use of Nuclear Magnetic Resonance Spectroscopy in the Study of Exocrine Secretion

  • M. Murakami
  • Y. Seo
  • M. C. Steward
  • H. Watari

Abstract

The ultimate goal in the study of exocrine secretion is to explain the phenomenon in vivo at a molecular level. Such an approach requires non-invasive methods to measure ion and water movements and energy metabolism. Nuclear magnetic resonance (NMR) spectroscopy provides one such method (see e.g. Gadian 1982; Farrar and Becker 1971).

Keywords

High Performance Liquid Chromatography Salivary Gland Nuclear Magnetic Resonance Spectrum Mandibular Gland Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler S, Shoubridge E, Radda GK (1984) Estimation of cellular pH gradients with 31P-NMR in intact rabbit renal tubular cells. Am J Physiol 247: C188–C196PubMedGoogle Scholar
  2. Balaban RS, Gadian DG, Radda GK (1981) Phosphorus nuclear magnetic resonance study of the kidney in vivo. Kidney Int 20: 575–579PubMedCrossRefGoogle Scholar
  3. Berendsen HJC, Edzes HT (1973) The observation and general interpretation of sodium magnetic resonance in biological material. Ann N Y Acad Sci 204: 459–485PubMedCrossRefGoogle Scholar
  4. Bond M, Shporer M, Petersen K, Civan MM (1981) 31P nuclear magnetic resonance analysis of toad urinary bladder. Mol Physiol 1: 243–263Google Scholar
  5. Boulanger Y, Vinay P, Desroches M (1985) Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance. Biophys J 47: 553–561PubMedCrossRefGoogle Scholar
  6. Bryden CC, Reilley CN, Desreux JF (1981) Multinuclear nuclear magnetic resonance study of three aqueous lanthanide shift reagents: Complexes with EDTA and axially symmetric macrocyclic polyamino polyacetate ligands. Anal Chem 53: 1418–1425CrossRefGoogle Scholar
  7. Burgen ASV (1956) The secretion of potassium in saliva. J Physiol (Lond) 132: 20–39Google Scholar
  8. Case RM, Conigrave AD, Novak I, Young JA (1980) Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines. J Physiol (Lond) 300: 467–487Google Scholar
  9. Case RM, Cook DI, Hunter M, Steward MC, Young JA (1985) Transepithelial transport of nonelectrolytes in the rabbit mandibular salivary gland. J Membr Biol 84: 239–248PubMedCrossRefGoogle Scholar
  10. Chapman BE, Cook DI, Gerrard J, Healey AP, Kuchel PW, Young JA (1982) Proton nuclear magnetic resonance spectroscopy (NMR) of rat salivary gland endpieces. J Physiol (Lond) 330: 36PGoogle Scholar
  11. Chu SC, Pike MM, Fossel ET, Smith TW, Baischi JA, Springer CS (1984) Aqueous shift reagents for high resolution cationic nuclear magnetic resonance III. Dy(TTHA)3-,Tm(TTHA)3, and Tm(PPP)27-. J Magn Reson 56: 33–47CrossRefGoogle Scholar
  12. Civan MM, Shporer M (1978) NMR of sodium-23 and potassium-39 in biological systems. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol. 1. Plenum, New YorkGoogle Scholar
  13. Civan MM, Degani H, Malgalit Y, Shporer M (1983) Observations of 23Na in frog skin by NMR. Am J Physiol 245: C213–C219PubMedGoogle Scholar
  14. Civan MM, Williams SR, Gadian DG, Rozengurt E (1986) 31P NMR analysis of intracellular pH of mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation. J Membr Biol 94: 55–64PubMedCrossRefGoogle Scholar
  15. Cope GH (1978) Stereological analysis of the duct system of the rabbit parotid gland. J Anat 126: 591–604PubMedGoogle Scholar
  16. Dawson MJ, Gadian DG, Wilkie DR (1977) Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance. J Physiol (Lond) 267: 703–735Google Scholar
  17. Fabry ME, Eisenstadt M (1975) Water exchange between red cells and plasma: measurement by nuclear magnetic relaxation. Biophys J 15: 1101–1110PubMedCrossRefGoogle Scholar
  18. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Academic, New YorkGoogle Scholar
  19. Furuyama S, Abe M, Yokoyama N, Sugiya H, Fujita Y (1980) Mitochondrial creatine kinase in rat submandibular gland. Int J Biochem 11: 259–264PubMedCrossRefGoogle Scholar
  20. Gadian DG (1982) Nuclear magnetic resonance and its applications to living systems. Oxford University Press, New YorkGoogle Scholar
  21. Gadian DG, Radda GK, Richards RE, Seeley PJ (1979) 31P NMR in living tissue: the road from a promising to an important tool in biology. In: Shulman RG (ed) Biological applications of magnetic resonance. Academic, London, pp 463–535Google Scholar
  22. Gillies RJ, Alger JR, den Hollander JA, Shulman RG (1982) Intracellular pH measured by NMR: methods and results. In: Nuccitelli R, Deamer DW (eds) Intracellular pH: its measurement, regulation, and utilization in cellular functions. Liss, New York, pp 79–104Google Scholar
  23. Gordon RE, Hanley PE, Shaw D, Gadian DG, Radda GK, Styles P, Bore PJ, Chan L (1980) Localization of metabolites in animals using 31P topical magnetic resonance. Nature 287: 736–738PubMedCrossRefGoogle Scholar
  24. Goto T (1981) Studies of sodium transport during secretion in the perfused dog submandibular gland. J Physiol Soc Jpn 43: 31–43Google Scholar
  25. Gullans SR, Avison MJ, Ogino T, Giebisch G, Shulman RG (1985) NMR measurements of intracellular sodium in the rabbit proximal tubule. Am J Physiol 249: F160-F168PubMedGoogle Scholar
  26. Gupta RK, Gupta P (1982) Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium (III)tripolyphosphate as paramagnetic shift reagent. J Magn Reson 47: 344–350CrossRefGoogle Scholar
  27. Homer J, Beevers MS (1985) Driven-equilibrium single-pulse observation of T1 relaxation. A reevaluation of a rapid “new” method for determining NMR spin-lattice relaxation times. J Magn Reson 63: 287–297CrossRefGoogle Scholar
  28. Hoult DI, Busby RJW, Gadian DG, Radda GK, Richards RE, Seeley BJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252: 285–287PubMedCrossRefGoogle Scholar
  29. House CR (1974) Water transport in cells and tissues. Arnold, LondonGoogle Scholar
  30. Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53: 985–987CrossRefGoogle Scholar
  31. Imai Y (1965) Study of the secretion mechanism of the submaxillary gland of dog; part 2. Effects of exchanging ions in the perfusate on salivary secretion and secretory potential, with special reference to the ionic distribution in the gland tissue. J Physiol Soc Jpn 27: 313–324Google Scholar
  32. Lau KR, Elliott AC, Brown PD (1989) Acetylcholine-induced intracellular acidosis in rabbit salivary gland acinar cells. Am J Physiol 256: C288–C295PubMedGoogle Scholar
  33. Lehninger AL (1975) Biochemistry, 2nd edn. Worth, New YorkGoogle Scholar
  34. Lin L-E, Shporer M, Civan MM (1982) 31P nuclear magnetic resonance analysis of frog skin. Am J Physiol 243: C74–C80PubMedGoogle Scholar
  35. Masuda Y, Nakamori T, Sekido E (1978) Polarographic studies of the exchange reaction between a cadmium(II)-triethylene-tetramine-l-hexaacetic acid complex and lanthanoid(III). J Chem Soc Jpn 204–207Google Scholar
  36. Mathur-De Vre R (1979) The NMR studies of water in biological systems. Prog Biophys Mol Biol 35: 103–134PubMedCrossRefGoogle Scholar
  37. Matsumoto T, Kanno T, Seo Y, Murakami M, Watari H (1986) 31P NMR studies of the isolated perfused pancreas of the rat. Biomed Res 7 (Suppl 2): 29–31Google Scholar
  38. Matsumoto T, Kanno T, Seo Y, Murakami M, Watari H (1988) Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas. Am J Physiol 254: G575–G579PubMedGoogle Scholar
  39. Metcalfe JC, Hesketh TR, Smith GA (1985) Free cytosolic Ca2+ measurements with fluorine labelled indicators using 19F NMR. Cell Calcium 6: 183–195PubMedCrossRefGoogle Scholar
  40. Mori H, Nakahari T, Imai Y (1984) Intracellular K activity in canine submandibular gland cells in resting and its change during stimulation. Jpn J Physiol 34: 1077–1088PubMedCrossRefGoogle Scholar
  41. Murakami M (1981) Heat production, blood flow, O2 uptake and CO2 output in the secretory process of the dog submandibular gland. J Physiol Soc Jpn 43: 135–147Google Scholar
  42. Murakami M, Imai Y, Seo Y, Watari H (1982) Assays of phosphorus compounds in perfused salivary gland by 31P-NMR. J Physiol Soc Jpn 44: 334Google Scholar
  43. Murakami M, Imai Y, Seo Y, Morimoto T, Shiga K, Watari H (1983) Phosphorus nuclear magnetic resonance of perfused salivary gland. Biochim Biophys Acta 762: 19–24PubMedCrossRefGoogle Scholar
  44. Murakami M, Seo Y, Nakahari T, Mori H, Imai Y, Watari (1984) Effects of Na+ depletion on fluid secretion and levels of phosphorus compounds as measured by 31P-NMR in perfused canine mandibular gland. Jpn J Physiol 34: 587–597PubMedCrossRefGoogle Scholar
  45. Murakami M, Seo Y, Matsumoto T, Ichikawa O, Ikeda A, Watari H (1986 a) Continuous measurement of Na, Li, and CI in the perfused salivary gland by use of NMR. Jpn J Physiol 36: 1267–1274PubMedCrossRefGoogle Scholar
  46. Murakami M, Novak I, Young JA (1986 b) Choline evokes fluid secretion by the perfused rat mandibular gland without desensitization. Am J Physiol 251: G84–G89PubMedGoogle Scholar
  47. Murakami M, Seo Y, Watari H, Ueda H, Hashimoto T, Tagawa K (1987) 31P NMRGoogle Scholar
  48. studies on the isolated perfused mandibular gland of the rat. Jpn J Physiol 37: 411–423Google Scholar
  49. Murakami M, Seo Y, Watari H (1988) Dissociation of fluid secretion and energy supply in rat mandibular gland by high dose of ACh. Am J Physiol 254: G781–G787PubMedGoogle Scholar
  50. Murakami M, Suzuki E, Miyamoto S, Seo Y, Watari H (1989) Direct measurement of K movement by 39K NMR during secretion with acetylcholine in perfused rat mandibular salivary gland. Pflügers Arch 414: 385–392PubMedCrossRefGoogle Scholar
  51. Nakahari T, Seo Y, Murakami M, Mori H, Miyamoto S, Imai Y, Watari H (1985) 31P-NMR study of dog submandibular gland in vivo and in vitro using the topical magnetic resonance. Jpn J Physiol 35: 729–740PubMedCrossRefGoogle Scholar
  52. Nakahari T, Yoshida H, Miyamoto M, Imai Y (1986) Measurement of extracellular fluid change in salivary gland using an impedance method. Jpn J Physiol 36: 565–583PubMedCrossRefGoogle Scholar
  53. Nunnally RL, Stoddard JS, Helman SI, Kokko JP (1983) Response of 31P-nuclear magnetic resonance spectra of frog skin to variations in pCO2 and hypoxia. Am J Physiol 245: F792–F800PubMedGoogle Scholar
  54. Ogawa S, Rottenberg H, Brown TR, Shulman RG, Castillo CL, Glynn P (1978) High-resolution 31P nuclear magnetic resonance study of rat liver mitochondria. Proc Natl Acad Sci USA 75: 1796–1800PubMedCrossRefGoogle Scholar
  55. Ogino T, Shulman GI, Avison MJ, Gullans SR, den Hollander JA, Shulman RG (1985) 23Na and 39K NMR studies of ion transport in human erythrocytes. Proc Natl Acad Sci USA 82: 1099–1103PubMedCrossRefGoogle Scholar
  56. Pike MM, Yarmush DM, Baischi JA, Lenkinski RE, Springer CS (1983) Aqueous shift reagents for high-resolution cationic nuclear magnetic resonance. 2. 25Mg, 39K, and 23Na resonances shifted by chelidamate complexes of dysprosium (III) and thulium (III). Inorg Chem 22: 2388–2392CrossRefGoogle Scholar
  57. Pirani D, Evans LAR, Cook DI, Young JA (1987) Intracellular pH in the rat mandibular salivary gland: the role of Na — H and Cl —HCO3 antiports in secretion. Pflügers Arch 408: 178–184PubMedCrossRefGoogle Scholar
  58. Poulsen JH (1974) Acetylcholine-induced transport of Na+ and K+ in the perfused cat submandibular gland. Pflügers Arch 349: 215–220PubMedCrossRefGoogle Scholar
  59. Poulsen JH, Oakley II B (1978) Intracellular potassium ion activity in resting and stimulated mouse pancreas and submandibular gland. Proc R Soc Lond [Biol] 204: 99–104CrossRefGoogle Scholar
  60. Putney JW (1978) Role of calcium in the fade of the potassium release response in the rat parotid gland. J Physiol (Lond) 281: 383–394Google Scholar
  61. Saito Y, Ozawa T, Suzuki S, Nishiyama A (1988) Intracellular pH regulation in the mouse lacrimal gland acinar cells. J Membr Biol 101: 73–81PubMedCrossRefGoogle Scholar
  62. Sasaki S, Nakagaki I, Mori H, Imai Y (1983) Intracellular calcium store and transport of elements in acinar cells of the salivary gland determined by electron probe X-ray microanalysis. Jpn J Physiol 33: 69–83PubMedCrossRefGoogle Scholar
  63. Schneyer LH, Schneyer CA (1960) Electrolyte and inulin spaces of rat salivary glands and pancreas. Am J Physiol 199: 649–652PubMedGoogle Scholar
  64. Schneyer LH, Schneyer CA (1962) Electrolyte and water transport by salivary gland slices. Am J Physiol 203: 567–571PubMedGoogle Scholar
  65. Seo Y, Murakami M, Watari H, Imai Y, Yoshizaki K, Nishikawa H, Morimoto T (1983) Intracellular pH determination by a 31P-NMR technique. The second dissociation constant of phosphoric acid in a biological system. J Biochem (Tokyo) 94: 729–734Google Scholar
  66. Seo Y, Murakami M, Matsumoto T, Nishikawa H, Watari H (1987a) Application of aqueous shift reagent, Dy(TTHA), for 23Na NMR studies of exocrine glands. Viabilities of organs perfused with shift reagent. J Magn Reson 72: 341–346CrossRefGoogle Scholar
  67. Seo Y, Murakami M, Matsumoto T, Nishikawa H, Watari H (1987b) Direct measurement of Na influx by 23Na NMR during secretion with acetylcholine in perfused rat mandibular gland. Pflügers Arch 409: 343–348PubMedCrossRefGoogle Scholar
  68. Seo Y, Murakami M, Suzuki E, Watari H (1987c) A new method to discriminate intracellular and extracellular K by 39K NMR without chemical-shift reagents. J Magn Reson 75: 529–533CrossRefGoogle Scholar
  69. Seo Y, Murakami M, Suzuki E, Maeda M, Watari H (1988 a) An experimental approach to 31P spin-lattice relaxation time measurement in biological systems. Magn Reson Med 6: 430–434PubMedCrossRefGoogle Scholar
  70. Seo Y, Steward MC, Mackenzie IS, Case RM (1988 b) Acetylcholine-induced metabolic changes in the perfused rabbit mandibular salivary gland studied by 31P-NMR spectroscopy. Biochim Biophys Acta 971: 289–297PubMedCrossRefGoogle Scholar
  71. Spring KR (1983) Fluid transport by gallbladder epithelium. J Exp Biol 106: 181–194PubMedGoogle Scholar
  72. Steward MC, Garson MJ (1985) Water permeability of Necturus gallbladder epithelial cell membranes measured by nuclear magnetic resonance. J Membr Biol 86: 203–210PubMedCrossRefGoogle Scholar
  73. Steward MC, Seo Y, Case RM (1989) Intracellular pH during secretion in the perfused rabbit mandibular salivary gland measured by 31P NMR spectroscopy. Pflügers Arch 414:200–207PubMedCrossRefGoogle Scholar
  74. Steward MC, Seo Y, Rawlings JM, Mackenzie IS, Case RM (1990) Water permeability of cell membranes in the perfused rabbit mandibular salivary gland measured by 31P NMR spectroscopy (to be published)Google Scholar
  75. Suzuki E, Maeda M, Kuki S, Tsukamoto K, Kawakami T, Seo Y, Murakami M, Watari H (1989) 31P spin-lattice relaxation time measurements in biological systems: heart, liver, kidney and erythrocytes of rat. Jpn J Magn Reson Mea 9: 115–120Google Scholar
  76. Takami H, Furuya E, Tagawa K, Seo Y, Murakami M, Watari H, Matsuda H, Hirose H, Kawashima Y (1988) NMR-invisible ATP in rat heart and its change in ischemia. J Biochem (Tokyo) 104: 35–39Google Scholar
  77. Takano K, Miyazaki Y, Nakata K, Seo Y, Murakami M, Watari H, Suzuki E, Mandel LJ (1988) 31P-NMR measurement of perfused rat kidney. Jpn J Magn Reson Med 8 S-1: 108Google Scholar
  78. Tamarin A, Sreebny LM (1965) The rat submaxillary salivary gland. A correlative study by light and electron microscopy. J Morphol 117: 295–352PubMedCrossRefGoogle Scholar
  79. Tanaka K, Yamada Y, Shimizu T, Sano F, Abe Z (1974) Fundamental investigations for a non invasive method of tumor detection by nuclear magnetic resonance. Biotelemetry 1: 337–350PubMedGoogle Scholar
  80. Taylor J, Deutsch C (1988) 19F-nuclear magnetic resonance: measurements of [O2] and pH in biological systems. Biophys J 53: 227–233PubMedCrossRefGoogle Scholar
  81. Terroux KG, Sekelj P, Burgen ASV (1959) Oxygen consumption and blood flow in the submaxillary gland of the dog. Can J Biochem Physiol 37: 5–15PubMedCrossRefGoogle Scholar
  82. Tsukamoto K, Murakami M, Seo Y, Watari H, Hironaka T, Oka T (1988) Biliary secretion and energetics of the cold preserved liver measured by means of nuclear magnetic resonance. In: Wong PYD, Young JA (eds) Exocrine secretion. Hong Kong University Press, Hong Kong, pp 195–198Google Scholar
  83. Young JA, Schögel E (1966) Micropuncture investigation of sodium and potassium excretion in rat submaxillary saliva. Pflügers Arch 291: 85–98CrossRefGoogle Scholar
  84. Young JA, Cook DI, Evans LAR, Pirani D (1987) Effects of ion transport inhibition on rat mandibular gland secretion. J Dent Res 66: 531–536PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1990

Authors and Affiliations

  • M. Murakami
  • Y. Seo
  • M. C. Steward
  • H. Watari

There are no affiliations available

Personalised recommendations