Ion Transport Regulation in Cystic Fibrosis Epithelia

  • J. Bijman
  • A. M. Hoogeveen
  • B. J. Scholte
  • M. Kansen
  • A. W. M. van der Kamp
  • H. R. de Jonge

Abstract

Cystic fibrosis (CF) is an autosomal recessive inherited disease that is manifest predominantly among Caucasians. In the Netherlands the average age of survival is 21 years. The clinical symptoms of CF are meconium ileus, pancreatic insufficiency, and/or obstruction of the deeper regions of the airways. In 99% of patients, salt wasting in the sweat is apparent. A single locus appears to be involved in CF, and the defective gene has been located on chromosome 7 (Wainwright et al. 1985).

Keywords

Hydrocortisone Sarcoma Barium Histamine Glutamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berschneider HM, Knowles MR, Azizkhan RG, Boucher RC, Tobey NA, Orlando RC, Powell DW (1988) Altered intestinal chloride transport in cystic fibrosis. FASEB J 2: 2625–2629PubMedGoogle Scholar
  2. Bijman J, Frömter E (1986) Direct demonstration of high transepitheleal chloride-conductance in normal human sweat duct which is absent in cystic fibrosis. Pflügers Arch 407:S123–S127PubMedCrossRefGoogle Scholar
  3. Bijman J, Quinton PM (1984) Influence of abnormal Cl- impermeability on sweating in cyctic fibrosis. Am J Physiol 247: C3–C9PubMedGoogle Scholar
  4. Bijman J, Quinton P (1987) Lactate and bicarbonate uptake in the sweat duct of cystic fibrosis and normal subjects. Pflügers Arch 408 (5): 505–510PubMedCrossRefGoogle Scholar
  5. Bijman J, Scholte B, de Jonge HR, Hoogeveen AT, Kansen MT, Sinaasappel M, van der Kamp AWM (1987) Chloride transport in CF; chloride channel regulation in cultured sweat duct and cultured nasal polyp epithelia. In: Mastella G, Quinton PM (eds) Cellular and molecular basis of cystic fibrosis. San Francisco Press, San Francisco, pp 133–140Google Scholar
  6. Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78: 1245–1252PubMedCrossRefGoogle Scholar
  7. Frizzell RA, Schoumacher RA, Shoemaker RL, Halm DR (1987) Chloride channel regulation in secretory epithelial cells. Pediatr Pulmonol [Suppl] 1: 24–25Google Scholar
  8. de Jonge HR (1984) The mechanisms of action of Escherichia coli toxin. Biochem Soc Trans 12:180–184PubMedGoogle Scholar
  9. de Jonge HR, Lohmann SM (1985) Mechanisms by which cyclic nucleotides and other intracellular mediators regulate secretion. Ciba Found Symp 112: 116–138PubMedGoogle Scholar
  10. de Jonge HR, Bijman J, Sinaasappel M (1987) Relation of regulatory enzyme levels to chloride transport in intestinal epithelial cells. Pediatr Pulmonol [Suppl] 1: 54–57Google Scholar
  11. Frizzell RA, Rechkemmer G, Shoemaker (1986) Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 233: 558–560PubMedCrossRefGoogle Scholar
  12. Knowles MJ, Gatzy J, Boucher R (1983) Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest 71: 1410–1417PubMedCrossRefGoogle Scholar
  13. Li M, McCann JD, Liedtke CM, Nairn AC, Greengard P, Welsh MJ (1988) Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331: 358–360PubMedCrossRefGoogle Scholar
  14. Pedersen PS, Larsen EH (1986) Effect of isoproterenol on ion transport in cell culture epithelial membranes derived from human sweat gland ducts. IRSC Med Sci 14: 108–110Google Scholar
  15. Quinton PM (1983) Chloride impermeability in cystic fibrosis. Nature 301: 421–422PubMedCrossRefGoogle Scholar
  16. Quinton PM, Bijman J (1983) Higher bio-electric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med 308: 1185–1189PubMedCrossRefGoogle Scholar
  17. Rhim JS, Jay G, Arnstein P, Price FM, Sanford KK, Aaronson SA (1984) Neoplastic transformation of human epidermal keratinocytes by AD12-SV 40 and Kirsten sarcoma virus. Science 227: 1250–1252CrossRefGoogle Scholar
  18. Sato K, Sato F (1984) Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest 73: 1763–1771PubMedCrossRefGoogle Scholar
  19. Schoumacher RA, Shoemaker RL, Halm DR, Tallant EA, Wallace RW, Frizzell RA (1987) Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330: 752–754PubMedCrossRefGoogle Scholar
  20. Taylor CJ, Baxter PS, Hardcastle J, Hardcastle PT (1988) Failure to induce secretion in jejunum biopsies from children with cystic fibrosis. Gut 529: 957–962CrossRefGoogle Scholar
  21. Wainwright BJ, Scambler PJ, Schmidtke J, Watson EA, Law HY, Farral M, Cooke HJ, Eiberg H, Williamson A (1985) Localization of cystic fibrosis locus to human chromosome 7 cen-q 22. Nature 318: 384–385PubMedCrossRefGoogle Scholar
  22. Welsh MJ, Liedtke CM (1986) Chloride and potassium channels in cystic fibrosis airway epithelia. Nature 322: 476–470CrossRefGoogle Scholar
  23. Widdicombe (1986) Cystic fibrosis and β-adrenergic response of airway epithelial cell cultures. Am J Physiol 251: R818–R812PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1990

Authors and Affiliations

  • J. Bijman
  • A. M. Hoogeveen
  • B. J. Scholte
  • M. Kansen
  • A. W. M. van der Kamp
  • H. R. de Jonge

There are no affiliations available

Personalised recommendations