Advertisement

Non-Adrenergic, Non-Cholinergic Control of Salivary Gland Function

  • D. A. Titchen
  • A. M. Reid

Abstract

It has been recognised for some time that the parasympathetic and sympathetic divisions of the autonomic nervous system may contribute to the regulation of salivary gland function (Babkin 1950; Burgen and Emmelin 1961; Young and Van Lennep 1979; Garrett 1982). Muscarinic cholinergic agonists and antagonists have been used to assess the role of the parasympathetic innervation. Effects of the muscarinic cholinergic innervation include vasodilation and profuse secretion of fluid of relatively low protein concentration. Similarly, the role of the sympathetic innervation has been judged from effects mediated by either α or β adrenoceptors and their block by the appropriate antagonists. Stimulation of α adrenoceptors may produce vasoconstriction, contraction of the myoepithelial cells and in some species, secretion. Stimulation of β adrenoceptors may result in vasodilation and has been shown in a number of species to lead to production of low volumes of fluid with high protein (or enzyme) concentration.

Keywords

Salivary Gland Parotid Gland Vasoactive Intestinal Peptide Vasoactive Intestinal Polypeptide Secretory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hadithi BAK, Stauber V, Mitchell J (1988) The co-localisation of substance P and VIP in cholinergic-type terminals of the rat parotid. J Anat 159: 83–92PubMedGoogle Scholar
  2. Andersson PO, Bloom SR, Edwards AV (1982a) Parotid responses to stimulation of the parasympathetic innervation in bursts in weaned lambs. J Physiol (Lond) 330: 163–174Google Scholar
  3. Andersson PO, Bloom SR, Edwards AV, Järhult J (1982b) Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat. J Physiol (Lond) 322: 469–483Google Scholar
  4. Babkin BP (1950) Secretory mechanisms of the digestive glands. Hoeber, New YorkGoogle Scholar
  5. Bertaccini G (1976) Active polypeptides of non-mammalian origin. Pharmacol Rev 28: 127–177PubMedGoogle Scholar
  6. Bloom SR, Edwards AV (1980) Vasoactive intestinal peptide in relation to atropine resistant vasodilation in the submaxillary gland of the cat. J Physiol (Lond) 300: 41–53Google Scholar
  7. Bloom SR, Edwards AV, Garrett JR (1987) Effects of stimulating the sympathetic innervation in bursts on submandibular vascular and secretory function in cats. J Physiol (Lond) 393: 91–106Google Scholar
  8. Burgen ASV, Emmelin NG (1961) Physiology of the salivary glands. Edward Arnold, London Carr DH (1977) Reflex-induced electrical activity in single units of secretory nerves to parotid gland in nerves to the gut. In: Brooks FP, Evers PW (eds) Nerves and the gut. Slack, New Jersey, pp 79–85Google Scholar
  9. Carr DH, Davey M, Titchen DA (1984) Sympathetic and adrenergic effects on protein secretion from the parotid of the sheep. In: Case RM, Lingard JM, Young JA (eds) Secretion: mechanisms and control. Manchester University Press, Manchester, pp 220–222Google Scholar
  10. Edwards AV, Reid AM, Titchen DA (1988) Actions of exogenous calcitonin gene related peptide on the ovine submaxillary gland. Proc Aust Physiol Pharmacol Soc 19: 203PGoogle Scholar
  11. Ekman R, Ekström J, Håkanson R, Sjögren S, Sundler F (1986) Calcitonin gene related peptide in rat salivary glands. J Physiol (Lond) 381: 36PGoogle Scholar
  12. Ekström J (1987) Neuropeptides and secretion. J Dent Res 66(2): 524–530PubMedCrossRefGoogle Scholar
  13. Ekström J, Månsson B, Tobin G (1983a) Vasoactive intestinal peptide evoked secretion of fluid and protein from rat salivary glands and the development of supersensitivity. Acta Physiol Scand 119: 169–175PubMedCrossRefGoogle Scholar
  14. Ekström J, Månsson B, Tobin G, Garrett JR, Thulin A (1983b) Atropine-resistant secretion of parotid saliva on stimulation of the auriculo temporal nerve. Acta Physiol Scand 119:445–449PubMedCrossRefGoogle Scholar
  15. Ekström J, Brodin E, Ekman R, Håkanson R, Mânsson B, Tobin G (1985) Depletion of neuropeptides in rat parotid glands and declining atropine-resistant salivary secretion upon continuous parasympathetic nerve stimulation. Regul Pept 11: 353–359PubMedCrossRefGoogle Scholar
  16. Ekström J, Garrett JR, Månsson B, Tobin G (1988a) The effects of atropine and chronic sympathectomy on maximal parasympathetic stimulation of parotid saliva in rats. J Physiol (Lond) 403: 105–116Google Scholar
  17. Ekström J, Månsson B, Olgart L, Tobin G (1988b) Non-adrenergic, non-cholinergic salivary secretion in the ferret. Q J Exp Physiol 73: 163–173PubMedGoogle Scholar
  18. Garrett JR (1982) Adventures with autonomic nerves. Perspectives in salivary glandular innervations. Proc R Micr Soc 17: 242–253Google Scholar
  19. Heidenhain R (1972) Über die Wirkung einiger Gifte auf die Nerven der Glandula submaxillaris. Pflügers Arch 5: 309–318CrossRefGoogle Scholar
  20. Itoh N, Obata K, Yanaihara N, Okamoto H (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304: 547–549PubMedCrossRefGoogle Scholar
  21. Larsson O, Dunér-Engström M, Lundberg JM, Fredholm BB, Änggård A (1986) Effects of VIP, PHM and substance P on blood vessels and secretory elements of the human submandibular gland. Regul Pept 13: 319–326PubMedCrossRefGoogle Scholar
  22. Lundberg JM (1981) Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurones of cat exocrine glands. Acta Physiol Scand [Suppl] 496:1–57Google Scholar
  23. Lundberg JM, Tatemoto K (1982) Vascular effects of the peptides PYY and PHI: comparison with APP and VIP. Eur J Pharmacol 83: 143–146PubMedCrossRefGoogle Scholar
  24. Lundberg JM, Änggård A, Fahrenkrug J, Hökfelt T, Mutt V (1980) Vasoactive intestinal polypeptide in cholinergic neurones of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion. Proc Natl Acad Sci USA 77: 1651–1655PubMedCrossRefGoogle Scholar
  25. Lundberg JM, Hedlund B, Bartfai T (1982) Vasoactive intestinal polypeptide enhances muscarinic binding in cat submandibular salivary gland. Nature 295: 147–149PubMedCrossRefGoogle Scholar
  26. Lundberg JM, Fahrenkrug J, Hökfelt T, Martling CR, Larsson O, Tatemoto K, Änggård A (1984a) Co-existence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man. Peptides 5: 593–606PubMedCrossRefGoogle Scholar
  27. Lundberg JM, Fahrenkrug J, Larsson O, Änggård A (1984b) Corelease of vasoactive intestinal polypeptide and peptide histidine isoleucine in relation to atropine-resistant vasodilation in cat submandibular salivary gland. Neurosci Lett. 52: 37–42PubMedCrossRefGoogle Scholar
  28. Patterson J, Brightling P, Titchen DA 1982) β-Adrenergic effects on composition of parotid salivary secretion of sheep on feeding. Q J Exp Physiol 67: 57–67PubMedGoogle Scholar
  29. Reid AM, Heywood LH (1986) The effects of exogenous vasoactive intestinal polypeptide on secretion from the parotid salivary gland of the pig. Proc Aust Physiol Pharmacol Soc 17:83PGoogle Scholar
  30. Reid AM, Heywood LH (1988) A comparison of the effects of vasoactive intestinal polypeptide on secretion from the submaxillary gland of the sheep and pig. Regul Pept 20:211–221PubMedCrossRefGoogle Scholar
  31. Reid AM, Titchen DA (1988a) Atropine-resistant secretory responses of the ovine parotid gland to reflex and direct parasympathetic stimulation. Q J Exp Physiol 73: 413–424PubMedGoogle Scholar
  32. Reid AM, Titchen DA (1988b) Atropine-resistant parasympathetic responses of the ovine parotid and submaxillary glands. J Physiol (Lond) 396:118PGoogle Scholar
  33. Reid AM, Titchen DA (1988 c) Effects of chronic denervation on the response of the ovine parotid to vasoactive intestinal polypeptide alone and with bethanechol. In: Davison JS, Shaffer EA (eds) Gastrointestinal and hepatic secretions: mechanism and control. University of Calgary Press, Calgary, pp 206–209Google Scholar
  34. Reid AM, Furness JB, Titchen DA (1988) Neural peptides in the ovine salivary glands. In: Young JA, Wong PYD (eds) Exocrine secretion. Hong Kong University Press, Hong Kong, pp 157–160Google Scholar
  35. Skofitsch G, Jacobowitz DM (1985) Calcitonin gene related peptide coexists with substance P in capsaicin sensitive neurons and sensory ganglia of the rat. Peptides 6: 747–754PubMedCrossRefGoogle Scholar
  36. Sundler F, Håkanson R, Ekblad E, Uddman R, Wahlestedt C (1986) Neuropeptide Y in the peripheral adrenergic and enteric nervous system. Int Rev Cytol 102: 243–269PubMedCrossRefGoogle Scholar
  37. Thulin A (1976) Motor and secretory effects of nerves on the parotid gland of the rat. Acta Physiol Scand 96: 506–511PubMedCrossRefGoogle Scholar
  38. Young JA, van Lennep EW (1979) Transport in salivary glands. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology IVB. Springer, Berlin Heidelberg New York, pp 563–674Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1990

Authors and Affiliations

  • D. A. Titchen
  • A. M. Reid

There are no affiliations available

Personalised recommendations