Advertisement

Catecholamine Receptors: Structure, Function, and Regulation

  • M. G. Caron
  • B. K. Kobilka
  • M. Bouvier
  • W. P. Hausdorff
  • J. L. Benovic
  • M. Lohse
  • S. Cotecchia
  • J. W. Regan
  • A. Fargin
  • J. R. Raymond
  • R. J. Lefkowitz
Conference paper
Part of the 40. Colloquium der Gesellschaft für Biologische Chemie 6.– 8. April 1989 in Mosbach/Baden book series (MOSBACH, volume 40)

Abstract

The various receptors for catecholamines, termed adrenergic receptors, represent excellent model systems for the study of receptor-mediated transmembrane signaling systems because of their ubiquity, coupling to well-defined effector mechanisms, and the clinical importance of drugs which interact with them. The β 1 and β 2-adrenergic receptors stimulate adenylyl cyclase via the guanine nucleotide regulatory protein Gs. The α 2-adrenergic receptors inhibit adenylyl cyclase via Gi. The α 1-adrenergic receptors stimulate hydrolysis of polyphosphoinositides by activating phospholipase C, thus generating inositol triphosphate and diacylglycerol. Each of these systems is in turn analogous to the retinal light transduction system which consists of the prototypic receptor rhodopsin, a G-protein transducin, and an effector enzyme, which is a cyclic GMP phosphodiesterase.

Keywords

Adenylyl Cyclase Adrenergic Receptor Membrane Span Domain Cytoplasmic Loop Catecholamine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benovic JL, Pike LJ, Cerione RA, Staniszewski C, Yoshimasa T, Codina J, Birnbaumer L, Caron MG & Lefkowitz RJ (1985) Phosphorylation of the mammalian β-adrenergic receptor by cAMP-dependent protein kinase: regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on the coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J Biol Chem 260: 7094–7101PubMedGoogle Scholar
  2. Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG & Lefkowitz RJ (1987a) Functional desensitization of the isolated β-adrenergic receptor by the β-adrenergic receptor kinase: potential role of the analog of the retinal binding protein arrestin (48KDa). Proc Natl Acad Sci USA 84: 8879–8882PubMedCrossRefGoogle Scholar
  3. Benovic JL, Mayor F Jr, Staniszewski C, Lefkowitz RJ & Caron MG (1987b) Purification and characterization of the β-adrenergic receptor kinase. J Biol Chem 262: 9026–9032Google Scholar
  4. Bouvier M, Hausdorff WP, DeBlasi A, O’Dowd BF, Kobilka BK, Caron MG & Lefkowitz RJ (1988) Removal of phosphorylation sites from the β.,-adrenergic receptor delays onset of agonist-promoted desensitization. Nature (Lond) 333: 370–372CrossRefGoogle Scholar
  5. Chung FZ, Wang CD, Porter PC. Venter JC & Fraser CM (1988) Site-directed mutagenesis and continuous expression of human β-adrenergic receptors. J Biol Chem 263: 4052–4055PubMedGoogle Scholar
  6. Clark RB (1986) Desensitization of hormonal stimuli coupled to regulation of cAMP levels. Adv Cyclic Nucleotide Protein Phosphorylation Res 20: 151–209PubMedGoogle Scholar
  7. Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG & Kobilka BK (1988) Molecular cloning and expression of the cDNA for the hamster α 1,-adrenergic receptor. Proc Natl Acad Sci USA 85: 7159–7163PubMedCrossRefGoogle Scholar
  8. Dixon RAF, Sigal IF, Rands E, Register RB, Candelore MR, Blake AD & Strader CD (1987) Ligand binding to β-adrenergic receptor involves its rhodopsin-like core. Nature (Lond) 326: 73–77CrossRefGoogle Scholar
  9. Dohlman HG, Caron MG, Strader CD, Amlaiky N & Lefkowitz RJ (1988) Identification and sequence of a binding site peptide of the β 2.,-adrenergic receptors. Biochem 27: 1813–1817CrossRefGoogle Scholar
  10. Fargin A, Raymond J, Lohse MJ, Kobilka BK, Caron MG & Lefkowitz RJ (1988) The genomic clone which resembles the β-adrenergic receptor sequence and encodes the 5HTIA receptor. Nature (Lond) 335: 358–360CrossRefGoogle Scholar
  11. Hausdorff WP, Bouvier M, O’Dowd BF, Irons GP, Caron MG & Lefkowitz RJ (1989) Phosphorylation sites on two domains for the β 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem 264: 12657–12665PubMedGoogle Scholar
  12. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG & Lefkowitz RJ (1988) Chimeric β 2-adrenergic receptors: delineation of domains involved in effector coupling in ligand binding specificity. Science 240: 1310–1316PubMedCrossRefGoogle Scholar
  13. Kunkel MW, Friedman J, Shenolikar S & Clark RB (1989) Cell-free heterologous desensitization of adenylyl cyclase in S49 lymphoma cell membranes mediated by cAMP dependent protein kinase. FASEB J 3: 2067–2074PubMedGoogle Scholar
  14. Lefkowitz RJ & Caron MG (1988) The adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 263: 4993–4996PubMedGoogle Scholar
  15. Liggett SB, Bouvier M, Hausdorff WP, O’Dowd BF, Caron MG & Lefkowitz RJ (1989) Altered patterns of agonist-stimulated cAMP accumulation in cells expressing mutant β2-adrenergic receptors lacking phosphorylation sites. Mol Pharmacol. (in press) Google Scholar
  16. Lohse MJ, Lefkowitz RJ, Caron MG & Benovic JL (1989) Inhibition of β-adrenergic receptor kinase prevents rapid homologous desensitization of the β-adrenergic receptors. Proc Natl Acad Sci USA 86: 3011–3015PubMedCrossRefGoogle Scholar
  17. O’Dowd BF, Hnatowich M, Regan JW, Leader WM, Caron MG & Lefkowitz RJ (1988) Site directed mutagenesis of the cytoplasmic domains of the human β 2-adrenergic receptor. J Biol Chem 263: 15985–15992PubMedGoogle Scholar
  18. Regan JW, Kobilka TS, Yang Feng DL, Caron MG, Lefkowitz RJ & Kobilka BK (1988) Cloning and expression of a human kidney cDNA for a novel α 2,-adrenergic receptor. Proc Natl Acad Sci USA 85: 6301–6305PubMedCrossRefGoogle Scholar
  19. Rubinstein RC, Wang SKF & Ross EM (1987) The hydrophobic tryptic core of the β-adrenergic receptor retains Gs, regulatory activity in response to agonists and thiols. J Biol Chem 262: 16655–16662Google Scholar
  20. Sibley DR, Benovic JL, Caron MG & Lefkowitz RJ (1987) Regulation of transmembrane signalling by receptor phosphorylation. Cell 48: 913–922PubMedCrossRefGoogle Scholar
  21. Strader CD, Dixon RAF, Cheung AH, Candelore MR, Blake AD & Sigal IS (1987a) Mutation that uncoupled the β-adrenergic receptor from Gs, and increased agonist affinity. J Biol Chem 262: 16439–166443Google Scholar
  22. Strader CD, Sigal IS, Register RV, Candelore MR, Rands E & Dixon RAF (1987b) Identification of residues required for ligand binding to the β-adrenergic receptors. Proc Natl Acad Sci USA 84: 4384–4388PubMedCrossRefGoogle Scholar
  23. Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS & Dixon RAF (1988) Conserved asparatic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J Biol Chem 63: 4052–4055Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. G. Caron
  • B. K. Kobilka
  • M. Bouvier
  • W. P. Hausdorff
  • J. L. Benovic
  • M. Lohse
  • S. Cotecchia
  • J. W. Regan
  • A. Fargin
  • J. R. Raymond
  • R. J. Lefkowitz
    • 1
  1. 1.Depts. of Cell Biology, Biochemistry and Medicine, Howard Hughes Medical InstituteDuke University Medical CenterDurhamUSA

Personalised recommendations