Skip to main content

The Structure of the Skeletal and Nonskeletal Muscle Calcium Channel

  • Conference paper
Molecular Mechanisms of Hormone Action

Abstract

A number of fundamental biological processes such as mobility, secretion, and neurotransmission are regulated by a change in the cytosolic calcium concentration. The cytosolic calcium concentration is raised from around 0.1 to 1 µM either by a release from cellular stores or by an influx from the extracellular space through voltage-dependent calcium channels. These channels are located in the plasma and transverse tubular membranes of many cells and are classified into at least three types (Nowycky et al. 1985), the T- (tiny or transient), N- (neither T- nor L-, or neuronal), and L- (large or long-lasting) channels. The L-type channels are the target of different organic drugs, the calcium channel blockers, which are used therapeutically in a variety of cardiovascular diseases. L- and N-type channels are not only regulated by the membrane potential or drugs but also by hormones through phosphorylation and/or G proteins. The electrophysiological properties of the L-type channel have been studied in great detail in cardiac, neuronal, and smooth muscle cells. In contrast, its biochemical and molecular structure has been elucidated up to now only in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T.& Saisu, H. (1987) Identification of the receptor for ω-conotoxin in brain. J. Biol. Chem. 262: 9877–9882

    PubMed  CAS  Google Scholar 

  • Barhanin, J., Schmid, A..& Lazdunski, M. (1988) Properties of structure and interaction of the receptor for ω-conotoxin, a polypeptide active on Ca2+ channels. Biochem. Biophys. Res. Commun. 150: 1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Bean, B.P. (1984) Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc. Natl. Acad. Sci. USA 81: 6388–6392

    Article  CAS  Google Scholar 

  • Berwe, D., Gottschalk, G.& Lüttgau, C.H. (1987) Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog. J. Physiol. 385: 693–707

    PubMed  CAS  Google Scholar 

  • Campbell, K.P., Leung, A.T., Sharp, A.H., Imagawa, T.& Kahl, S.D. (1988) Ca2+ channel antibodies: subunit-specific antibodies as probes for structure and function. In: Morad M., Nayler, W.G., Kazda, S. &Schramm, M. (eds.) The calcium channel: structure, function and implication. Springer, Berlin Heidelberg New York Tokyo, pp. 586–600

    Google Scholar 

  • Chang, C.F.& Hosey, M.M. (1988) Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J. Biol. Chem. 263: I8929–18937

    Google Scholar 

  • Curtis, B.M.& Catterall, W.A. (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23: 2113–2118

    Article  PubMed  CAS  Google Scholar 

  • Ellis, S.B., Williams, M.E., Ways, N.R., Brenner, R., Sharp, A.H., Leung, A.T., Campbell, K.P., McKenna, E., Koch, W.J., Hui, A., Schwartz, A.& Harpold, M.M. (1988) Sequence and expression of mRNAs encoding the a, and a., subunits of a DHP-sensitive calcium channel. Science 241: 1661–1664

    Article  PubMed  CAS  Google Scholar 

  • Felbel, J., Welling, A., Peper, K.& Hofmann, F. (1989) Activation of the ß-adrenergic receptor increases L-type calcium current independent of CAMP and cAMP-kinase in adult tracheal smooth mucle cells. Biol. Chem. Hoppe-Seyler 370: 787

    Google Scholar 

  • Flockerzi, V., Oeken, H.-J.& Hofmann, F. (1986a) Purification of a functional receptor for calcium channel blockers from rabbit skeletal muscle microsomes. Eur. J. Biochem. 161: 217–224

    Article  CAS  Google Scholar 

  • Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavaliè, A. &Trautwein, W. (1986b) The purified dihydropyridine binding site from skeletal muscle T-tubules is a functional calcium channel. Nature (London) 323: 66–68

    Article  CAS  Google Scholar 

  • Galizzi, D -P, Borsotto, M., Barhanin, J., Fosset, M.& Lazdunski, M. (1986) Characterization and photoaffinity labeling of receptor sites for the Ca2+ channel inhibitors d-cis-diltiazem, (f)-bepridil, desmethoxyverapamil, and (+)-PN 200–110 in skeletal muscle transverse tubule membranes. J. Biol. Chem. 261: 1393–1397

    PubMed  CAS  Google Scholar 

  • Gray, R. &Johnston, D. (1987) Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature (London) 327: 620–622

    Article  CAS  Google Scholar 

  • Hymel, L., Striessnig, J., Glossmann, H.& Schindler, H. (1988) Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc. Natl. Acad. Sci. USA 85: 4290–4294

    Article  PubMed  CAS  Google Scholar 

  • Jahn, H., Nastainczyk, W., Röhrkasten, A., Schneider, T.& Hofmann, F. (1988) Site specific phosphorylation of the purified receptor for calcium channel blockers by cAMP-, cGMP-dependent protein kinase, protein kinase C, calmodulin-dependent protein kinase II, and casein kinase II. Eur. J. Biochem. 178: 535–542

    Article  PubMed  CAS  Google Scholar 

  • Lamb, G.D.& Walsh, T. (1987) Calcium currents, charge movement and dihydropyridine binding in fast-and slow-twitch muscle of rat and rabbit. J. Physiol. 393: 595–617

    PubMed  CAS  Google Scholar 

  • Leung, A.T., Imagawa, T., Block, B., Franzini-Armstrong, C.& Campbell, K.P. (1988) Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. J. Biol. Chem. 263: 994–1001

    PubMed  CAS  Google Scholar 

  • Lotan, I., Goelet, P., Gigi, A.& Dascal, N. (1989) Specific block of calcium channel expression by a fragment of dihydropyridine receptor cDNA. Science 243: 666–669

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.& Coronado, R. (1988) Heterogeneity of conductance states in calcium channels of skeletal muscle. Biophys. J. 53: 387–395

    Article  PubMed  CAS  Google Scholar 

  • Marqueze, B., Martin-Moutot, N., Leveque, C.& Couraud, F. (1988) Characterization of the w-conotoxin-binding molecule in rat brain synaptosomes and cultured néürons. Mol. Pharmacol. 34: 87–90

    PubMed  CAS  Google Scholar 

  • Morton, M.E., Caffrey, J.M., Brown, A.M.& Froehner, S.C. (1988) Monoclonal antibody to the al subunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H1 myocytes. J. Biol. Chem. 263: 613–616

    PubMed  CAS  Google Scholar 

  • Nastainczyk, W., Röhrkasten, A., Sieber, M., Rudolph, C., Schächtele, C., Marme, D.& Hofmann, F. (1987) Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem. 169: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Norman, R.I., Burgess, A.J., Allen, E.& Harrison, T.M. (1987) Monoclonal antibodies against the 1,4-dihydropyridine receptor associated with voltage-sensitive Ca= channels detect similar polypeptides from a variety of tissues and species. FEBS Lett. 212: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Nowycky, M.C., Fox, A.P.& Tsien, R.W. (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature (London) 316: 440–443

    Article  CAS  Google Scholar 

  • Pelzer, D., Cavalié, A., Flockerzi, V., Hofmann, F.& Trautwein, W. (1988) Reconstitution ofsolubilized and purified dihydropyridine receptor from skeletal muscle microsomes as two single calcium channel conductances with different functional properties. In: Morad, M., Nayler, W.G., Kazda, S., Schramm, M.(eds.) The calcium channel: structure. function and implication. Springer, Berlin Heidelberg New York Tokyo, pp 217–230

    Google Scholar 

  • Rios, E.& Brum, G. (1987). Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle Nature (London) 235: 717–720

    Article  Google Scholar 

  • Röhrkasten, A., Meyer, H., Nastainczyk, W., Sieber, M.& Hofmann, F. (1988) cAMP-dependent protein kinase rapidly phosphorylates Ser 687 of the rabbit skeletal muscle receptor for calcium channel blockers. J. Biol. Chem. 263: 15325–15329

    PubMed  Google Scholar 

  • Rosenthal, W., Hescheler, J., Trautwein, W. and Schultz, G. (1988) Control of voltage-dependent Ca2+ channels by G protein-coupled receptors. FASEB J. 2: 2784–2790

    PubMed  CAS  Google Scholar 

  • Rosenthal, W., Hescheler, J., Trautwein, W. and Schultz, G. (1988) Control of voltage-dependent Ca2+ channels by G protein-coupled receptors. FASEB J. 2: 2784–2790

    PubMed  CAS  Google Scholar 

  • Schmid, A., Barhanin, J., Coppola, T., Borsotto, M.& Lazdunski, M. (1986) Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptor associated with voltage-dependent Ca2+ channels in skeletal, cardiac, and smooth muscles. Biochemistry 25: 3492–3495

    Article  PubMed  CAS  Google Scholar 

  • Schneider, T.& Hofmann, F. (1988) The bovine cardiac receptor for calcium channel blockers is a 195 kDa protein. Eur. J. Biochem. 174: 127–135

    Article  Google Scholar 

  • Sieber, M., Nastainczyk, W., Zubor, V., Wernet, W.& Hofmann, F. (1987) The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur. J. Biochem. 167: 117–122

    Article  PubMed  CAS  Google Scholar 

  • Striessnig, J., Moosburger, K., Goll, D., Ferry, D.R.& Glossmann, H. (1986a) Stereoselective photoaffinity labelling of the purified 1,4-dihydropyridine receptor of the voltage-dependent calcium channel. Eur. J. Biochem. 161: 603–609

    Article  PubMed  CAS  Google Scholar 

  • Striessnig, J., Goll, A., Moosburger, K.& Glossmann, H. (1986b). Purified calcium channels have three allosterically coupled drug receptors. FEBS Lett. 197: 204–210

    Article  PubMed  CAS  Google Scholar 

  • Striessnig, J., Knaus, H.-G., Grabner, M., Moosburger, K., Seitz, W., Lietz, H.& Glossman, H. (1987) Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett. 212: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Striessnig, J., Knaus, H.-G.& Glossmann, H. (1988) Photoaffinity-labelling of the calcium-channel-associated 1,4-dihydropyridine and phenylalkylamine receptor in guinea-pig hippocampus. Biochem. J. 253: 39–47

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Seagar, M.J., Jones, J.F., Reber, B.F.X.& Catterall, W.A. (1987) Subunit structure of dihydropyridine-sensitive calcium channel from skeletal muscle. Proc. Natl. Acad. Sci. USA 84: 5478–5482

    Article  PubMed  CAS  Google Scholar 

  • Talvenheimo, J.A., Worley, III J.F.& Nelson M.T. (1987) Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation. Biophys. J. 52: 891–899

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T.& Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature (London) 328: 313–318

    Article  CAS  Google Scholar 

  • Tanabe, T., Beam, K.G., Powell, J.A.& Numa, S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature (London) 366: 134–139

    Article  Google Scholar 

  • Trautwein, W., Kameyama, M., Hescheler, J.& Hofmann, F. (1986) Cardiac calcium channels and their transmitter modulation. Progr. Zool. 33: 163–182

    CAS  Google Scholar 

  • Vilven, J., Leung, A.T., Imagawa, T., Sharp, A.H., Campbell, K.P.& Coronado, R. (1988) Interaction of calcium channels of skeletal muscle with monoclonal antibodies specific for its dihydropyridine receptor. Biophys. J. 53: 556a

    Google Scholar 

  • Yatani, A., Codina, J., Imoto, Y., Reeves, J.P., Birnbaumer, L.& Brown, A.M. (1987) A G-protein directly regulates mammalian cardiac calcium channels. Science 238: 1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Yatani, A., Imoto, Y., Codina, J., Hamilton, S.L., Brown, A.M.& Birnbaumer. L. (1988). The stimulatory G-protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Cat channels. J. Biol. Chem. 263: 9887–9895

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hofmann, F. et al. (1989). The Structure of the Skeletal and Nonskeletal Muscle Calcium Channel. In: Gehring, U., Helmreich, E.J.M., Schultz, G. (eds) Molecular Mechanisms of Hormone Action. 40. Colloquium der Gesellschaft für Biologische Chemie 6.– 8. April 1989 in Mosbach/Baden, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75022-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75022-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75024-3

  • Online ISBN: 978-3-642-75022-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics