Derivation and Analysis of Flow Networks for Open Ocean Plankton Systems

  • Hugh W. Ducklow
  • M. J. R. Fasham
  • Alain F. Vézina
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 32)


Within the past decade a revolution has occurred in our understanding of the structure and functioning of marine plankton systems. Among the major developments contributing to a new paradigm for planktonic communities were the elaboration by Dugdale & Goering (1967) and Eppley & Peterson (1979) of the concept of new and regenerated production and the role of these processes in setting the balance between inputs to and outputs from the upper ocean ecosystem. Another important factor contributing to new ideas about the organization of the marine plankton was the discovery of the large and dynamic stocks of autotrophic and heterotrophic microbes and their dominant role in cycling carbon and nitrogen (Pomeroy 1974; Azam & Hodson 1977; Hobbie et al. 1977; Johnson & Sieburth 1979; Waterbury et al. 1979; Williams 1981; Ducklow 1983).


Dissolve Organic Nitrogen Bacterial Production Fecal Pellet Flow Network Euphotic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F. & R.E. Hodson 1977. Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr. 22: 492–501.CrossRefGoogle Scholar
  2. Banse, K. 1984. Review of “Marine planktonic protozoa and microzooplankton ecology,” Limnol.Oceanogr. 29: 445–446Google Scholar
  3. Bjornsen, P.K. 1986. Bacterioplankton growth yield in continuous seawater cultures, Mar.Ecol. Prog.Ser. 30: 191–96.CrossRefGoogle Scholar
  4. Chervin, M.B. 1978. Assimilation of particulate organic carbon by estuarine and coastal copepods, Marine Biol., 49: 265–275.CrossRefGoogle Scholar
  5. Ducklow, H.W. 1983. The production and fate of bacteria in the ocean, BioScience 33: 494–501.CrossRefGoogle Scholar
  6. Ducklow, H.W. 1986. Bacterial biomass in warm core Gulf Stream ring 82B: Mesoscale distributions, temporal changes, and production, Deep Sea Res. 33: 1789–1812.CrossRefGoogle Scholar
  7. Ducklow, H.W., D.A. Purdie, P.J. LeB. Wilhams & J.M. Davies 1986, Bacterioplankton: A sink for carbon in a coastal plankton community, Science 232: 865–67.PubMedCrossRefGoogle Scholar
  8. Dugdale, R.C. & Goering, J.J. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceangr. 12: 196–206.CrossRefGoogle Scholar
  9. Eppley, R.W. & B J. Peterson 1979. Particulate organic matter flux and planktonic new production in the deep ocean, Nature 282: 677–680.CrossRefGoogle Scholar
  10. Fasham, M.J.R.(ed.) 1984. Flows Of Energy And Materials In Marine Ecosystems; Theory And Practice, New York: Plenum, 733 pp.Google Scholar
  11. Fasham, M.J.R. 1985. Flow analysis of materials in the marine euphotic zone, Can. Bull. Fish. Aquat. Sci. 213: 139–162.Google Scholar
  12. Field, J.G., F. Wulff & K.H. Mann 1989. The need to analyze ecological networks, In: Wulff, F., J.G. Field & K H. Mann(eds) Network Analysis in Marine Ecology. Methods and Applications, Lecture Notes in Coastal and Estuarine Studies, Springer-Verlag, New York.Google Scholar
  13. Field, J.G., C.L. Moloney & C.G. Attwood 1989. Network analysis of simulated succession after an upwelling event. In: Wulff, F., J.G. Field & K. H. Mann(eds) Network Analysis in Marine Ecology. Methods and Applications, Lecture Notes in Coastal and Estuarine Studies, Springer-Verlag, New York.Google Scholar
  14. Franks, P.J.S., J.S. Wroblewski, & G.R. Flierl 1986. Prediction of phytoplankton growth in response to the frictional decay of a warm-core ring, J.Geophys.Res. 91C: 7603–7610.CrossRefGoogle Scholar
  15. Frost, B. W. 1984. Utilization of phytoplankton production in the surface layer, In Global Ocean Flux Study: Proceedings of a workshop. Washington, D.C.: Natl Academy Press, pp 125–135.Google Scholar
  16. Goldman, J.C., D.A. Caron, O.K. Andersen & M.R. Dennett 1985. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics, Mar. Ecol. Prog. Ser., 24: 231–242.CrossRefGoogle Scholar
  17. Goldman, J.C., D.A. Caron & M.R. Dennett 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr. 32: 1239–1252.CrossRefGoogle Scholar
  18. Harrison, W.G., T. Platt & M.R. Lewis 1987. f-Ratio and its relationship to ambient nitrate concentration in coastal waters, J. Plankton Res. 9: 235–248.CrossRefGoogle Scholar
  19. Hitchcock, G.L., C. Langdon & T.J. Smayda 1985. Seasonal variations in the phytoplankton biomass and productivity of a warm core Gulf Stream Ring, Deep Sea Res. 32: 1287–1300.CrossRefGoogle Scholar
  20. Hobbie, J.H., R.J. Daley & S. Jasper 1977. Use of Nuclepore filters for counting bacteria by epifluorescence microscopy, Appl. Environ. Microbiol. 33: 1225–1228.Google Scholar
  21. Johnson, P.W. & J. McN. Sieburth 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr. 24: 928–35.CrossRefGoogle Scholar
  22. Joint, I.R. & R.J. Morris 1982. The role of bacteria in the turnover of organic matter in the sea, Oceanogr. Mar. Biol. Annu. Rev. 20: 65–118.Google Scholar
  23. Joyce, T. & P. Wiebe 1983. Warm Core Rings of the Gulf Stream, Oceanus 26: 34–44.Google Scholar
  24. Joyce, T.M. 1985. Gulf Stream warm-core ring collection: An introduction, J. Geophys. Res., 90: 8801–8802.CrossRefGoogle Scholar
  25. Kay, J.J., L. Graham & R.E. Ulanowicz 1989. A detailed guide to network analysis, In: Wulff, F., J.G. Field & K. H. Mann (eds). Network Analysis in Marine Ecology. Methods and Applications. Lecture Notes in Coastal and Estuarine Studies, Springer-Verlag, New York.Google Scholar
  26. Landry, M.R. 1977. A review of important concepts in the trophic organization of pelagic ecosystems, Helgolander wiss. Meeresunters 30: 8–17.CrossRefGoogle Scholar
  27. Landry, M.R., L.W. Haas & V.L. Fagerness 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii, Mar. Ecol. Prog. Ser. 16: 127–133.CrossRefGoogle Scholar
  28. Laws, E.A., W.G. Harrison & G.R. DiTullio 1985. A comparison of nitrogen assimilation rates based on 15N uptake and autotrophic protein synthesis, Deep-Sea Res. 32: 85–95.CrossRefGoogle Scholar
  29. McCarthy, J.J. & J.L. Nevins 1986. Utilization of nitrogen and phosphorus by primary producers in warm-core ring 82-B following deep convective mixing, Deep Sea Res., 33: 1773–1788.CrossRefGoogle Scholar
  30. Michaels, A.F. & M.W. Silver 1988. Primary production, sinking fluxes and the microbial foodweb, Deep-Sea Res. 35: 473–490.CrossRefGoogle Scholar
  31. Pace, M.L., J.E. Glasser & L.R. Pomeroy 1984. A simulation analysis of continental shelf food webs, Mar. Biol. 82: 47–63.CrossRefGoogle Scholar
  32. Paffenhofer, G.A. & J.D.H.Strickland 1970. Anote on the feeding of Calanus helgolandicus on detritus, Marine Biol. 5: 97–99.CrossRefGoogle Scholar
  33. Paffenhofer, G.A. & S.C. Knowles 1979. Ecological implications of fecal pellet size, production and consumption by copepods, J. Mar. Res. 37: 35–49.Google Scholar
  34. Parker, R.L. 1977. Understanding inverse theory, Ann. Rev. Earth Planet. Sci. 5: 35–64.CrossRefGoogle Scholar
  35. Patten, B.C., R.W. Bosserman, J.T. Finn & W.G. Gale 1976. Propagation of cause in ecosystems, pp. 458–579 In: B.C. Patten, Ed., Systems Analysis and Simulation in Ecology, vol. IV. Academic Press, New York.Google Scholar
  36. Payne, WJ. & W.J. Wiebe 1978. Growth yield and efficiency in chemosynthetic microorganisms, Ann. Rev. Microbiol. 32: 155–183.CrossRefGoogle Scholar
  37. Platt, T., K.H. Mann & R.E. Ulanowicz (eds) 1981. Mathematical Models In Biological Oceanography, Monogr. Oceanographic Methodology 7, Paris: UNESCO, 157 pp.Google Scholar
  38. Pomeroy, L.R. 1974. The ocean’s food web: A changing Paradigm, Bioscience 24: 499–504.CrossRefGoogle Scholar
  39. Rassoulzadegan, F. & R. W. Sheldon 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment, Limnol. Oceanogr., 31: 1010–1021.CrossRefGoogle Scholar
  40. Roman, M.R. 1984. Utilization of detritus by the copepod, Acartia tonsa, Limnol. Oceanogr. 29: 949–959.CrossRefGoogle Scholar
  41. Roman, M.R., C.S. Yentsch, A.L. Gauzens & D.A. Phinney 1986. Grazer control of the fine-scale distribution of phytoplankton in warm-core Gulf Stream rings, J. Mar. Res. 44: 795–813.CrossRefGoogle Scholar
  42. Smetacek, V. 1985. Role of sinking in diatom life history cycles: ecological, evolutionary, and geological significance, Mar. Biol. 84: 239–251.CrossRefGoogle Scholar
  43. Steele, J.H. 1974. The Structure of Marine Ecosystems, Cambridge, Harvard, 128 pp.Google Scholar
  44. Steele, J.H. & B. W. Frost 1977. The structure of plankton communities, Phil. Trans. Royal Soc. London B. Biol. Sci., 280: 485–534.CrossRefGoogle Scholar
  45. Suttle, C.A., J.A. Fuhrman & D.G. Capone 1987. Rapid ammonium turnover times and concentration dependent resource partitioning in planktonic communites measured using 13N, EOS 68: 1760.Google Scholar
  46. Turley, C.M. 1985. Biological studies in the vicinity of a shallow-sea tidal mixing front. IV. Seasonal and spatial distribution of urea and its uptake by phytoplankton, Phil. Trans. R. Soc. Lond. B310: 471–500.CrossRefGoogle Scholar
  47. Ulanowicz, R.E. 1984. Community measures of food networks and their possible applications, pp 23–48 In: In M. Fasham (ed.), Flows of energy and materials in marine ecosystems: Theory and practice, Plenum Press.Google Scholar
  48. Ulanowicz, R.E. & T. Platt (eds) 1985. Ecosystem Theory for Biological Oceanography, Can. Bull. Fish. Aquat. Sci., 213: 260 p.Google Scholar
  49. Ulanowicz, R.E. 1986. Growth and Development: Ecosystems Phenomenology, Springer-Verlag, New York. 232 pp.Google Scholar
  50. Ulanowicz, R.E., & D. Baird 1989. The seasonal dynamics of the Chesapeake Bay ecosystem: in. Structure of recycling. Ecology, in press.Google Scholar
  51. Vézina, A.F. 1989 Construction of flow networks using inverse methods, In: Wulff, F., J.G. Field & K. H. Mann(eds) Network Analysis in Marine Ecology. Methods and Applications, Lecture Notes in Coastal and Estuarine Studies, Springer-Verlag, New York.Google Scholar
  52. Vézina, AF. & T. Platt. 1987. Small-scale variability of new production and particulate fluxes in the ocean, Can. J. Fish. Aquat. Sci., 44: 198–205.CrossRefGoogle Scholar
  53. Vézina, AF. & T. Platt 1988. Foodweb dynamics in the ocean. Part 1. Best-estimates of flow networks using inverse methods. Mar. Ecol. Prog. Ser. 42: 269–287.CrossRefGoogle Scholar
  54. Waterbury, J.B., S.W. Watson, R.R. Guillard, & L.E. Brand 1979. Widespread occurrence of a unicellular, marine, planktonic cyanobacterium, Nature 277: 392–94.CrossRefGoogle Scholar
  55. Welschmeyer, N.A., and C.J. Lorenzen 1985. Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres, Limnol. Oceanogr. 30: 1–21.CrossRefGoogle Scholar
  56. Wheeler, P.A & D.L. Kirchman 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr. 31: 998–1009.CrossRefGoogle Scholar
  57. Wiebe, P.H. & T.J. McDougall (Eds) 1986. Warm Core Rings: Studies of their Physics, Chemistry, and Biology, Deep-Sea Res, 33: 1455–1922.Google Scholar
  58. Williams, P.J. LeB. 1981. Incorporation of microheterotrophic processees into the classical paradigm of the planktonic food web, Kieler Meeresforsch. 5: 1–28.Google Scholar
  59. Wunsch, K. 1978. The North Atlantic general circulation west of 50° West determined by inverse methods, Rev. Geophys. Space Phys. 16: 583–590.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Hugh W. Ducklow
    • 1
  • M. J. R. Fasham
    • 2
  • Alain F. Vézina
    • 3
  1. 1.Horn Point Environmental LaboratoriesCambridgeUSA
  2. 2.Institute of Oceanographic SciencesWormley, Godalming SurreyUK
  3. 3.Département d’OcéanographieUniversité du Québec à RimouskiRimouskiCanada

Personalised recommendations