A Comparative Anatomy of the Baltic Sea and Chesapeake Bay Ecosystems

  • Fredrik Wulff
  • Robert E. Ulanowicz
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 32)


The theoretical basis for describing and explaining ecological processes has been historically deficient at higher hierarchical levels, such as at the level of whole ecosystems. The manifest tendency for modern technological society to perturb large natural systems has, to a large extent, motivated studies at the ecosystem level, because experience has shown that we cannot explain these changes by studying organisms and populations in isolation (Mann 1982).


Trophic Position Average Path Length Deposit Feeder Carnivorous Fish Brevoortia Tyrannus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad 1983. The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  2. Aneer, G. 1980. Estimates of feeding pressure on pelagic and benthic organisms by Baltic herring (Clupea harengus v: membras L.), Ophelia, Suppl. 1: 265–275.Google Scholar
  3. Ankar, S. 1977. The soft bottom ecosystem of the Northern Baltic Proper with special reference to the macrofauna, Contrib. Askö Lab., Univ. Stockholm, 19: 1–62.Google Scholar
  4. Baird, D. and R.E. Ulanowicz. 1986. A network analysis of the Chesapeake Bay ecosystem, Ref. No. UMCEES-CBL 87–77, Center for Environmental and Estuarine Sciences, Solomons, MD.Google Scholar
  5. Bergman, A. & M. Olsson 1985. Pathology of Baltic Grey Seal and Ringed Seal females with special reference to adrenocorrtial hyperplasmia: Is environmental pollution the cause of a widely distributed disease? Finnish Game Res. 44: 47–62.Google Scholar
  6. Boynton, W.R., W.M. Kemp & J.M. Barnes 1985. Report to: Maryland Office of Environmental Programs. Chesapeake Bay Water Quality Monitoring Program Ecosystems Processes Component (EPC). July 1984–June 1985, University of Maiyland [UMCEES] CBL 85-21: 1–42.Google Scholar
  7. Boynton, W.R., W.M. Kemp, J.H. Garber & J.M. Barnes 1986. Report to: Maryland Office of Environmental Programs. Chesapeake Bay Water Quality Monitoring Program. Ecosystems Processes Component (EPC), July 1985–May 1986, University of Maryland [UMCEES] CBL 86-56: 1 - 52.Google Scholar
  8. Cederwall, H., & R. Elmgren 1980. Biomass increase of benthic macrofauna d&nstrates eutrophication of the Baltic Sea, Ophelia, Suppl. 1: 287–304.Google Scholar
  9. Ducklow, H.W. 1983. Production and fate of bacteria in the oceans, Bioscience 33: 494–501.CrossRefGoogle Scholar
  10. Ducklow, H.W., D. A Purdie, P. J. L. Williams & J. M. Davies 1986. Bacterioplankton: A sink for carbon in a coastal marine plankton community, Science. 232: 865–867.PubMedCrossRefGoogle Scholar
  11. Elmgren, R. 1978. Structure and dynamics of Baltic benthos communities, with particular reference to the relationship between macro- and meiofauna, Kieler Meeresforsch., Sonderh. 4: 1–22.Google Scholar
  12. Elmgren, R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea, - Rapp. P.-v. Réun. Cons. int. Explor.Mer 183: 149–166.Google Scholar
  13. Elmgren, R. 1987. Effects of increased nutrient loading on marine ecosystems: the Baltic, Background paper GESAMP WG “Nutrients and Eutrophication in the Marine Environment”, Paris, 22 pp.Google Scholar
  14. Flemer, DA & J. Olman. 1971. Daylight incubator estimates of primary production in the mouth of the Patuxent River, Maryland, Chesapeake. Sci. 12: 105–110.CrossRefGoogle Scholar
  15. Finn, J. 1976. The cycling index, J. Theor. Biol., 56: 363–73.PubMedCrossRefGoogle Scholar
  16. Goodman, D. 1975. The theoiy of diversity-stability relationships in ecology, Quarterly Review of Biology, 50: 237–266.CrossRefGoogle Scholar
  17. Hällfors, G. & Å. Niemi 1981. Vegetation and primary production, pp. 220–238. In: Voipio, A (ed.) The Baltic Sea, Elsevier, Amsterdam, 418 pp.Google Scholar
  18. Heinle, D.R. 1966. Production of a calanoid copepod, Acartia tonsa in the Patuxent River estuary, Chesapeake. Sci. 7: 59–74.CrossRefGoogle Scholar
  19. Heinle, D.R. & DA Hemer. 1975. Carbon requirements of a population of the estuarine copepod Euryt&ra affinis, Mar. Biol. 31: 235–247.CrossRefGoogle Scholar
  20. Homer, M. & W.R. Boynton 1978. Stomach analysis offish collected in the Calvert Cliffs region, Chesapeake Bay-1977, University of Maryland. UMCEES 78-154-CBL, 1–363.Google Scholar
  21. Hurd, L.E., M.V. Mellinger, LJL Wolf & S J. McNaughton 1971. Stability and diversity at three trophic levels in terrestrial ecosystems, Science 173: 1134–1136.PubMedCrossRefGoogle Scholar
  22. Jansson, B.-O., G. Aneer & S. Neilbring 1985. Spatial and temporal distribution of the demersal fish fauna in a Baltic archipelago as determined by SCUBA census, Mar. Ecol. Prog. Ser., 23: 31–43.CrossRefGoogle Scholar
  23. Jansson,A-M. &N.Kautskyl977. Quantitative survey of hard bottom communities in a Baltic archipelago, pp 359–366. In: Keegan, B. F., P. O. O’Ceidigh, and P. S. J. Boaden (eds) Biology of benthic organisms, Pergamon Press, Oxford. 630 pp.Google Scholar
  24. Jernelöv, A & R. Rosenberg, 1976. Stress tolerance of ecosystems, Environ. Cons. 3: 43–46.CrossRefGoogle Scholar
  25. Kay, J J., L. Graham & R. E. Ulanowicz 1989. A detailed guide to network analysis, In: Wulff, F., J.G. Field & K. H. Mann (eds) Network Analysis in Marine Ecology. Methods and Applications. Lecture Notes in Coastal and Estuarine Studies, Springer-Verlag, New York.Google Scholar
  26. Kautsky, N. 1981. On the trophic role of the blue mussel (Mytilus edulis L.) in a Baltic coastal ecosystem and the fate of the organic matter produced by the mussels, Kieler Meeresforsch., Sonderh. 5: 454–461.Google Scholar
  27. Kremer, P. 1979. Predation by the ctenophore Mnemiopsis leidyi in Narrangansett Bay, Rhode Island, Estuaries 2: 97–105.Google Scholar
  28. Larsson, U., R. Elmgren & F. Wulff 1985. Eutrophication and the Baltic sea: causes and consequences, Ambio, 14: 9–14.Google Scholar
  29. Larsson, U. & Å. Hagström 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol. 52: 199–206.CrossRefGoogle Scholar
  30. Leggett, W.C., W.R. Boynton, V. F. Gallucci, L. Johnson, R. Margalef, J. McGlade, D. Mikelecky, R. Rosen, R. O. Ulloa & J. Watson 1985. Hypothesis testing and sampling design in exploited ecosystems, pp 237–240. In: Ulanowicz, R.E. & T. Platt (eds) Ecosystem theory for biological oceanography. Can. Bull. Fish. Aquat Sci. 213Google Scholar
  31. Malone, T.C., W.M. Kemp, H.W. Ducklow, W.R. Boynton, J.H. Tuttle & R.B. Jonas 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary, Mar. Ecol. Prog. Ser. 32: 149–160.CrossRefGoogle Scholar
  32. Mann, K. H. 1982. Ecology of Coastal Waters. A Systems Approach, Studies in Ecology, Volume 8. Blackwell Scientific Publications, Oxford, 322 pp.Google Scholar
  33. Nehring, D., G. Aertebjerg, P. Alenius, V. Astok, S. Fonselius, M. Hannus, V. Tervo, A Troszinska, P. Tulkki & AK. Yurkovskis, 1987. Nutrients, pp 35–81. In: Lassig, J. (ed). First periodic assessment of the state of the marine environment of the Baltic Sea area, 1980–1985; Background document. Baltic Sea Environm. Proc. 17B.Google Scholar
  34. Nixon, S. W., C.A Oviatt, J. Frithsen & B. Sullivan 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems, J. limnol. Soc. sth. Afr. 12: 43–71.Google Scholar
  35. Odum, E.P. 1969. The strategy of ecosystem development, Science 164: 262–270.PubMedCrossRefGoogle Scholar
  36. Odum, H.T. 1971. Environment, Power and Society, Wiley-Interscience, New York, 331 pp.Google Scholar
  37. Ojaveer, E. 1981. Marine pelagic fishes, pp. 276–292, In: A Voipio (ed) The Baltic Sea. Elsevier, Amsterdam, 418 pp.Google Scholar
  38. Peters, R. H. 1986. The role of prediction in limnology, limnol. Oceanogr. 31: 1143–1159.CrossRefGoogle Scholar
  39. Pimm, S. L. 1984. The complexity and stability of ecosystems, Nature, Vol. 307: 321–326.CrossRefGoogle Scholar
  40. Roman, M.R. 1984a. Utilization of detritus by the copepod, Acartia tonsa, Limnol. Oceanogr. 25: 949–959.CrossRefGoogle Scholar
  41. Roman, M.R. 1984b. Ingestion of detritus and microheterotrophs by pelagic marine zooplankton, Bulletin of Marine Science 35: 477–494.Google Scholar
  42. Rosenberg, R. 1976. The relation of treatment and ecological effects in brackish water regions, Pure and Appl.Chem. 45: 199–203.CrossRefGoogle Scholar
  43. Segerstråle, S.G. 1957. Baltic Sea, Mem. Geol. Soc. America 67: 751–800.Google Scholar
  44. Sellner, K.G., R.V. Lacouture, D. C. Brownlee & C. R. Parrish 1985. Report to: Maryland Office of Environmental Programs (OEP), Chesapeake Bay Water Quality Monitoring Program. Phytoplankton and microzooplankton; data summaiy. The Academy of Natural Sciences, Benedict Estuarine Research Laboratory, Benedict, MDGoogle Scholar
  45. Sherr, E. B., B. F. Sherr & L. J. Albright 1987. Bacteria: Link or sink? Science. 235: 88–89.CrossRefGoogle Scholar
  46. Smullen, J.T., J.Taft. & J. Macknis 1982. Nutrient and sediment loads to the tidal Chesapeake Bay system, pp. 147–262, In: E.G. Macalaster, D., D.ABarker. and M. Kasper (eds.), Chesapeake Bay Program Technical Studies: a Synthesis. U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  47. Stoecker, D. K. & N. K. Sanders. 1985. Differential grazing by Acartia tonsa on a dinoflagellate and a tintinnid, J. Plankton Res. 7: 85–100.CrossRefGoogle Scholar
  48. Szymer, J. & R.E. Ulanowicz 1987. Total flows in ecosystems, Ecol. Mod. 35: 123–136.CrossRefGoogle Scholar
  49. Tuttie, J.H., T. Malone, R. Jonas, H. Ducklow & D. Cargo. 1985. Nutrient-dissolved oxygen dynamics: Roles of phytoplankton and microheterotrophs under summer conditions, Report to U.S. Environmental Protection Agency. University of Maryland [UMCEES] CBL 85–39: 1–50.Google Scholar
  50. Tuttle, J.H., T. Malone, R. Jonas, H. Ducklow & D. Cargo. 1986. Nutrient-dissolved oxygen dynamics: Roles of phytoplankton and microheterotrophs under summer conditions, Report to U.S. Environmental Protection Agency. University of Maryland [UMCEES] CBL 86–125: 1–153.Google Scholar
  51. Ulanowicz, R. E. 1983. Identifying the structure of cycling in ecosystems, Mathematical Biosciences 65: 219–237.CrossRefGoogle Scholar
  52. Ulanowicz, R. E. 1986. Growth and Development: Ecosystems Phenology. Springer-Verlag, New York, 203 pp.Google Scholar
  53. Vollenwieder, R. A. (ed) 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris, France, 154 pp.Google Scholar
  54. Wiebe, W. J. & D. F. Smith 1977. Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by micro-heterotrophs, Mar. Biol. 42: 213–223.CrossRefGoogle Scholar
  55. Winberg, G. G. 1956. Rate of Metabolism and Food Requirements of Fish, Fisheries Research Board, Canada Translation Series, No. 194.Google Scholar
  56. Wulff, F., G. Aertebjerg, G. Nicolaus, Å. Niemi, P. Ciszevski, S. Schulz & W. Kaiser, 1986. The changing pelagic ecosystem of the Baltic Sea, Ophelia, Suppl. 4: 299–319.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Fredrik Wulff
    • 1
  • Robert E. Ulanowicz
    • 2
  1. 1.Askö LaboratoryUniversity of StockholmStockholmSweden
  2. 2.Chesapeake Biological LaboratoryUniversity of MarylandSolomonsUSA

Personalised recommendations