Neuroleptika, Antidepressiva und Lithium — Synopsis und Perspektiven

  • L. Maître
Conference paper


Die pharmakologischen und neurobiochemischen Wirkungen der Neuroleptika, Antidepressiva und des Lithiums sind schon vielfach beschrieben worden, und zwar in jedem beliebigen Umfang. Zentralpunkte der Beschreibungen sind hie und da die pharmakologischen Wirkungen gewesen, oder auch die neurobiochemischen Effekte, mit besonderer Bedeutung der tierexperimentellen Aspekte, oder dann die klinischen Befunde. Selten aber sind alle drei Klassen der oben erwähnten Psychopharmaka in kurzer, einheitlicher Form mit Betonung der biologischen Effekte und Ausblick auf die heutigen Forschungsrichtungen vorgestellt worden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen PH, Braestrup C (1986) Evidence for different states of the dopamine D1 receptor: Clozapine and fluperlapine may preferentially laben an adenylate cyclase-coupled state of the D1 receptor. J Neurochem 47: 1822–1831PubMedCrossRefGoogle Scholar
  2. Andersen PH, Nielsen EB, Gronvald FC, Braestrup C (1986) Some atypical neuroleptics inhibit [3H]SCH 23390 binding in vivo. Eur J Pharmacol 120: 143–144PubMedCrossRefGoogle Scholar
  3. Avissar S, Schreiber G, Danon A, Belmaker RH (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331: 440–442PubMedCrossRefGoogle Scholar
  4. Bansal VS, Inhorn RC, Mejerus PW (1987) The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate. J Biol Chem 262: 9444–9447PubMedGoogle Scholar
  5. Batty I, Nahorski SR (1987) Lithium inhibits muscarinic-receptor-stimulated inositol tetrakisphosphate accumulation in rat cerebral cortex. Biochem J 247: 797–800PubMedGoogle Scholar
  6. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321PubMedCrossRefGoogle Scholar
  7. Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary gland. Biochem J 206: 587–595PubMedGoogle Scholar
  8. Bertolino A, Crippa D, Di Dio S et al. (1988) Rolipram versus imipramine in patients with major, „minor“ or atypical depressive disorder: A double blind double dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol 3: 245–253PubMedCrossRefGoogle Scholar
  9. Bieck PR, Antonin KH (1989) Tyramine potentiation during treatment with MAO-inhibitors: Brofaramine and moclobemide vs. irreversible inhibitors. J Neural Transm [Suppl] in pressGoogle Scholar
  10. Bieck PR, Firkusny L, Schick C et al. (1989) Monoamine oxidase inhibition by phenelzine and brofaromine in healthy volunteers. Clin Pharmacol Ther 45: 260–269PubMedCrossRefGoogle Scholar
  11. Bischoff S, Christen P, Vassout A (1988) Blockade of hippocampal dopamine ( DA) receptors: A tool for antipsychotics with low extrapyramidal side effects. Prog Neuropsychopharmacol Biol Psychiatry 12: 455–467Google Scholar
  12. Bobon D, Breulet M, Gerard-Vandenhove MA, Guiot-Goffioul F, Plomteux G (1988) Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double blind double dummy study between rolipram and desipramine in hospitalized major and/or endogenous depressives. Eur Arch Psychiatry Neurol Sci 238: 2–6PubMedCrossRefGoogle Scholar
  13. Breyer-Pfaff U, Gaertner JH (1987) Antidepressiva: Pharmakologie, therapeutischer Einsatz and Klinik der Depression. Medizinisch-pharmakologisches Konpendium, Bd 5. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  14. Bürki HR, Gaertner JH, Breyer-Pfaff U, Schied HW (1983) Neuroleptika: Grundlagen and Therapie. In: Langer G, Heimann H (Hrsg) Psychopharmaka, Grundlagen and Therapie. Springer, Wien New York, S 203–300Google Scholar
  15. Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: A dopamine Di selective benznaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 247: 1093–1102PubMedGoogle Scholar
  16. Cichini G, Placheta P, Singer EA (1987) B-HT920 and B-HT958: Presynaptic effects on electrically evoked 3H-dopamine release from slices of rat nucleus accumbens. NaunynSchmiedebergs Arch Pharmacol 335: 28–31CrossRefGoogle Scholar
  17. Costall B, Domeney AM, Kelly ME, Naylor RJ, Tyers MB (1987) The antipsychotic potential of GR38032F, a selective antagonist of 5-HT3 receptors in the central nervous system. Br J Pharmacol 90: 89Google Scholar
  18. Da Prada M, Keller HH, Ketler R et al. (1982) Rol 1–1163, a specific and short acting MAO-inhibitor with antidepressant properties. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine oxidase-basic and clinical frontiers. Excerpta Medica, Amsterdam, pp 183–196Google Scholar
  19. Delini-Stula A (1983) Pharmakologie der Antidepressiva. In: Langer G, Heiman H (Hrsg) Psychopharmaka, Grundlagen und Therapie. Springer, Wien New York, S 81–95Google Scholar
  20. Delini-Stula A, Hauser K, Bauman P, Olpe HR, Waldmeier P, Storni A (1982) Stereospecificity of behavioural and biochemical responses to oxaprotiline — a new antidepressant. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: Molecular mechanisms. Raven Press, New York, pp 265–275Google Scholar
  21. Delini-Stula A, Vassout A, Hauser K, Bittiger H, Buech O, Olpe HR (1983) Oxaprotiline and its enantiomers: Do they open new avenues in the research on the mode of action of antidepressants? In: Usdin E, Goldstein M, Friedhoff A, Georgotas A (eds) Frontiers in neuropsychiatry research. Macmillan, London pp 121–134Google Scholar
  22. Ebstein RP, Hermon M, Belmaker RH (1980) The effect of lithium on noradrenaline induced cyclic AMP accumulation in rat brain. Inhibition after chronic treatment and absence of supersensitivity. J Pharmacol Exp Ther 213: 161–167Google Scholar
  23. Emrich HM, Dose M, Zerssen D van (1984) Action of sodium valproate and of oxacarbazepine in patients with affective disorders. In: Emrich HM, Okuma T, Müller AA (eds) Anticonvulsants in affective disorders. Excerpta Medica, Amsterdam, pp 45–55Google Scholar
  24. Giannini AJ, Taraszewski R, Loiselle RH (1987) Verapamil and lithium in maintenance therapy of manic patients. J Clin Pharmacol 27: 980–982PubMedGoogle Scholar
  25. Greil W (1981) Pharmakokinetik and Toxikologie des Lithiums. Bibl Psychiatr 161: 69–103PubMedGoogle Scholar
  26. Greil W, Calker D van (1983) Lithium: Grundlagen und Therapie. In: Langer G, Heimann H (Hrsg) Psychopharmaka, Grundlagen und Therapie. Springer, Wien New York, S 161–202Google Scholar
  27. Harrison-Read PE (1978) Models of lithium action based on behavioural studies using animals. In: Johnson FN, Johnson S (eds) Lithium in medical practice. MTP Press, Lancaster, pp 289–303Google Scholar
  28. Inhorn RC, Bansal VS, Majerus PW (1987) Pathway for inositol 1,3,4-trisphosphate and 1,4-bisphosphate metabolism. Proc Natl Acad Sci (USA) 84: 2170–2174CrossRefGoogle Scholar
  29. lorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 226: 462–468Google Scholar
  30. Janssen PAJ, Niemegeers CJE, Awouters F, Schellekens KHL, Megens AAHP, Meert TF (1988) Pharmacology of risperidone (R64766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244: 685–693PubMedGoogle Scholar
  31. Maître L, Baumann PA, Jaekel J, Waldmeier PC (1982) 5-HT uptake inhibitors: Psychopharmacological and neurobiochemical criteria of selectivity. In: Ho BT, Schoolar JC, Usdin E (eds) Serotonin in biological psychiatry. Adv Biochem Psychopharmacol 34: 229–246Google Scholar
  32. Möller HJ, Kissling W, Dietzfelbinger T, Stoll KD, Wendt G (1989) Efficacy and tolerability of a new antipsychotic compound ( Savoxepine ): Results of a pilot study. Pharmacopsychiatry 22: 38–41Google Scholar
  33. Mühlbauer HD, Müller-Oerlinghausen B (1985) Fenfluramine stimulation of serum cortisol in patients with major affective disorders and healthy controls: Further evidence for a central serotonergic action of lithium in man. J Neural Transm 61: 81–94Google Scholar
  34. Newman ME, Belmaker RH (1987) Effects of lithium in vitro and ex vivo on components of the adenylate cyclase system in membranes of the cerebral cortex of the rat. Neuro-pharmacology 26: 211–217Google Scholar
  35. Okuma T (1984) Therapeutic and prophylactic efficacy of carbamazepine in manic depressive psychosis. In: Emrich HM, Okuma T, Müller AA (eds) Anticonvulsants in affective disorders. Excerpta Medica, Amsterdam, pp 76–87Google Scholar
  36. Olpe HR, Schellenberg A (1980) Reduced sensitivity of neurons to noradrenaline after chronic treatment with antidepressant drugs. Eur J Pharmacol 63: 7–13PubMedCrossRefGoogle Scholar
  37. Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: A primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229: 327–336Google Scholar
  38. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur J Pharmacol 47: 379–391Google Scholar
  39. Schiwy H, Heath WR, Delini-Stula A (1989) Therapeutic and side-effect profile of a selective and reversible MAO-A inhibitor, brofaromine — Results of dose-finding trials in depressed patients. J Neural Transm [Suppl] in pressGoogle Scholar
  40. Schorderet M, Calanca A (1988) Neuroleptiques (antipsychotiques). In: Schorderet et al. (eds) Pharmacologie, des concepts fondamentaux aux applications thérapeutiques. Slatkine, Genève, pp 369–384Google Scholar
  41. Stefanis CN, Alevisos B, Papadimitriou G, Hatzimanolis J, Markianos M (1989) Clinical experience with a new monoamine oxidase inhibitor moclobemide (RO11–1163). Curr Med Res Opin 11: 65–72Google Scholar
  42. Sugrue MF (1981) Current concepts on the mechanism of action of antidepressant drugs. Pharmacol Ther 13: 219–247PubMedCrossRefGoogle Scholar
  43. Sulser F (1978) Tricyclic antidepressants: Animal pharmacology. In: Iversen LL, Iversen SD, Snyder SH (eds) Affective disorders: Drug action in animal and man. Plenum Press, New York London, pp 157–197Google Scholar
  44. Thomsen K (1978) Renal handling of lithium at non-toxic and toxic serum lithium levels. A review. Dan Med Bull 25: 106–115PubMedGoogle Scholar
  45. Vahora SA, Malek-Ahmadi P (1988) S-adenosylmethiomine in the treatment of depression. Neurosci Behav Rev 12: 139–141CrossRefGoogle Scholar
  46. Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257:495–496Google Scholar
  47. Waldmeier PC (1989) Mechanisms of action of lithium in affective disorders: A status report. Pharmacol Toxicol (in press)Google Scholar
  48. Waldmeier PR (1983) Neurobiochemische Wirkungen antidepressiver Substanzen. In: Langer G, Heimann H (Hrsg) Psychopharmaka, Grundlagen und Therapie. Springer, Wien New York, pp 65–81Google Scholar
  49. Waldmeier PC, Baumann PA, Hauser K, Maître L, Storni A (1982) Oxaprotiline, a nor-adrenaline uptake inhibitor with an active and an inactive enantiomer. Biochem Pharmacol 31: 2169–2176PubMedCrossRefGoogle Scholar
  50. Waldmeier PC, Feiner AE, Tipton K (1983) The monoamine oxidase inhibiting properties of CGP 11 305 A. Eur J Pharmacol 94: 73–83PubMedCrossRefGoogle Scholar
  51. Whitworth P, Kendall DA (1988) Lithium selectively inhibits muscarinic receptor-stimulated inositol tetrakisphosphate accumulation in mouse cerebral cortex slices. J Neurochem 51: 258–265PubMedCrossRefGoogle Scholar
  52. Wolfersdorf M, Wendt G, Binz U, Steiner B, Hole G (1988) CGP 12 103 A versus clomipramine in the treatment of depressed patients — Results of a double blind study. Pharmacopsychiatry 21: 203–207PubMedCrossRefGoogle Scholar
  53. Wolff J (1979) Lithium interactions with the thyroid gland. In: Cooper TB, Gershon S, Kline NS, Schou M (eds) Lithium: Controversies and unresolved issues. Excerpta Medica, Amsterdam, pp 552–564Google Scholar
  54. Wood AJ, Goodwin GM (1987) A review of the biochemical and pharmacological actions of lithium. Psychol Med 17: 579–600PubMedCrossRefGoogle Scholar
  55. Zohar J, Ebstein RP, Belmaker RH (1982) Adenylate cyclase as the therapeutic target site of lithium. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 154–166Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • L. Maître
    • 1
  1. 1.CIBA-GEIGY AGBaselSchweiz

Personalised recommendations