Advertisement

Neurobiologische Forschungskonzepte für die Pharmakotherapie affektiver Störungen

  • F. Holsboer
Conference paper

Zusammenfassung

Die wichtigsten Anregungen für die Kausalforschung affektiver Erkrankungen kamen aus der Neuropharmakologie. Nach der Entdeckung der antidepressiven Wirkung von Imipramin durch den Schweizer Psychiater Kuhn und der Beobachtung, daß bei 10–20% aller Patienten, die mit Reserpin behandelt werden, depressive Syndrome entstehen, wurde die Noradrenalin (NA)-Mangelhypothese formuliert. Sie basierte auf pharmakologischen Befunden, nach denen das Antidepressivum Imipramin durch Wiederaufnahmehemmung von NA in die präsynaptische Nervenendigung dessen postsynaptische Bioverfügbarkeit erhöht (Abb. 1). Weiter stützt sich diese Hypothese auf die pharmakologische Eigenschaft von Reserpin, das die präsynaptischen NA-Vesikel entspeichert und damit nach längerer Anwendung die noradrenerge Neurotransmission vermindert. Das Konzept der NA-Mangelhypothese war von großem heuristischem Wert und hat verschiedene neurobiologische Richtungen in der Depressionsforschung wesentlich beeinflußt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Asberg M, Bertilsson L. Martensson M, Scalia-Tomba GP, Thoren P, Träskman-Bendz (1984) CSF monoamines in melancholia. Acta Psychiat Scand 69: 201–219PubMedCrossRefGoogle Scholar
  2. Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321PubMedCrossRefGoogle Scholar
  3. Brunello N, Barbacchia ML, Chuang DM, Costa E (1982) Down-regulation of beta adrenergic receptors following repeated desipramine injection: Permissive role of serotonergic axons. Neuropharmacology 21: 1145–1149PubMedCrossRefGoogle Scholar
  4. Bylund DB (1988) Subtypes of alpha2-adrenoceptors: Pharmacological and molecular biological evidence converge. TIPS 9: 356–361PubMedGoogle Scholar
  5. Casey PJ, Gilman AG (1988) G-protein involvement in receptor-effector coupling. J Biol Chem 263: 2577–2580PubMedGoogle Scholar
  6. Collins S, Caron MG, Lefkowitz RJ (1988) Beta2-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J Biol Chem 263: 9067–9070PubMedGoogle Scholar
  7. Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK (1988) Molecular cloning and expression of the cDNA for the hamster alpha-adrenergic receptor. Proc Natl Acad Sci USA 85: 7159–7163PubMedCrossRefGoogle Scholar
  8. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 63: 1–55CrossRefGoogle Scholar
  9. Edman G, Asberg M, Levander S, Schalling D (1986) Skin conductance habituation and cerebrospinal fluid 5-hydroxyindoleacetic acid in suicidal patients. Arch Gen Psychiatry 43: 586–592PubMedGoogle Scholar
  10. Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RI (1988) The genomic clone G-21 which ensembles a (3-adrenergic receptor sequence encodes the 5-HT(1A) receptor. Nature 335: 358–360PubMedCrossRefGoogle Scholar
  11. Göthert M (1988) Modulation of transmitter release by presynaptic serotonin receptors. NATO ASI Series 19: 55–68Google Scholar
  12. Hadcock JR, Malbon CC (1988) Down-regulation of beta-adrenergic receptors: Agonistinduced reduction in receptor mRNA levels. Proc Natl Acad Sci USA 85: 5021–5025PubMedCrossRefGoogle Scholar
  13. Härfstrand A, Fuxe K, Cintra A et al. (1986) Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc Natl Acad Sci USA 83: 9779–9783PubMedCrossRefGoogle Scholar
  14. Holsboer F (1989) Psychiatric implications of altered limbic-hypothalamic-pituitary-adrenocortical activity. Eur Arch Psychiatry Neurol Sci 238: 302–322PubMedCrossRefGoogle Scholar
  15. Holsboer F, Liebl R, Hofschuster E (1982) Repeated dexamethasone suppression test during depressive illness. Normalization of test result compared with clinical improvement. J Affective Disord 4: 93–101Google Scholar
  16. Hu ZY, Bourreau E, Jung-Testas I, Robel P. Baulieu EE (1987) Neurosteroids: Oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA 84: 8215–8219Google Scholar
  17. Julius D, MacDermott AB, Axel R, Jessell TM (1988) Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science 241: 558–564PubMedCrossRefGoogle Scholar
  18. Kitayama I, Janson AM, Cintra A etal. (1988) Effects of chronic imspramine treatment on glucocorticoid receptor immunoreactivity in various regions of the rat brain. J Neural Transco 73: 191–203CrossRefGoogle Scholar
  19. Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330: 746–748PubMedCrossRefGoogle Scholar
  20. Kobilka KB, Matsui H, Kobilka TS etal. (1987) Cloning, sequencing and expression of the gene coding for the human platelet alpha-2-adrenergic receptor. Science 238: 650–656PubMedCrossRefGoogle Scholar
  21. Lefkowitz RJ, Caron MG (1988) Adrenergic receptors. Models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 263: 4993–4996Google Scholar
  22. Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Köhler M, Fujita N, Rodriguez HF, Stephenson A, Darlison MG, Barnard EA, Seeburg PH (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335: 76–79PubMedCrossRefGoogle Scholar
  23. Manier DH, Gillespie DD, Sulser F (1987) 5,7-Dihydroxytryptamine induced lesions of serotonergic neurons and desipramine induced down-regulation of cortical beta adrenoceptors: a re-evaluation. Biochem Pharmacol 36:3308–3310Google Scholar
  24. Mann JJ, Stanley M, McBride A, McEwen BS (1986) Increased serotonin2 and betaadrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43: 954–959PubMedGoogle Scholar
  25. Neer EJ, Clapham DE (1988) Roles of G protein subunits in transmembrane signalling. Nature 333: 129–134PubMedCrossRefGoogle Scholar
  26. Potter WZ, Scheinin M, Golden RN (1985) Selective antidepressants and cerebrospinal fluid. Arch Gen Psychiatry 42: 1171–1177PubMedGoogle Scholar
  27. Pritchett DB, Bach AW, Wozny M, Taleb O, Dal Toso R, Shih J, Seeburg PH (1988) Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 7: 4135–4140PubMedGoogle Scholar
  28. Pritchett DB, Sontheimer H, Gorman CM, Kettenmann H, Seeburg PH, Schofield PR (1988) Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science 242: 1306–1308PubMedCrossRefGoogle Scholar
  29. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338: 582–585PubMedCrossRefGoogle Scholar
  30. Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA for an alpha2-adrenergic receptor subtype. Proc Natl Acad Sci USA 85: 6301–6305PubMedCrossRefGoogle Scholar
  31. Schofield PR, Darlison MG, Fujita N et al. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227PubMedCrossRefGoogle Scholar
  32. Shimoda K, Yamada N, Ohi K, Tsujimoto T, Takahashi K, Takahashi S (1988) Chronic administration of tricyclic antidepressants suppresses hypothalamo-pituitary-adrenocortical activity in male rats. Psychoneuroendocrinology 13: 431–440PubMedCrossRefGoogle Scholar
  33. Snyder SH, Supattapone S, Danoff S, Worley PF, Baraban JM (1988) The inositol trisphosphate receptor: A potpourri of second-messenger regulation. Cell Mol Neurobiol 8: 15Google Scholar
  34. Steiger A, Benkert O, Wöhrmann S. Steinseifer D, Holsboer F (1989) Effects of trimipramine on sleep-EEG, penile tumescence (NPT) and nocturnal hormonal secretion; a long-term-study in three normal controls. Neuropsychobiology, in pressGoogle Scholar
  35. Strasser RH, Benovic JL, Caron MG, Lefkowitz MJ (1986) ß-Agonist-and prostaglandin E1-induced translocation of the ß-adrenergic receptor kinase: Evidence that the kinase may act on multiple adenylate cyclase-coupled receptors. Proc Natl Acad Sci USA 83: 6362–6366Google Scholar
  36. Worley PF, Baraban JM, Snyder SH (1987) Beyond receptors: Multiple second-messenger systems in brain. Ann Neurol 21: 217–229Google Scholar
  37. Yamamoto KR (1985) Steroid receptor regulated transcription of specific genes and gene networks. Ann Rev Genet 19: 209–252PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • F. Holsboer
    • 1
  1. 1.Psychiatrischen UniversitätsklinikAlbert-Ludwig-UniversitätFreiburgDeutschland

Personalised recommendations