Tissue Accessibility of Gd-DTPA in Meningiomas and Neuromas

  • T. Watabe
  • T. Iwata
Conference paper


The relaxation rate of water in the presence of Gd-DTPA (gadolinium-diethylenetriamine pentaacetic acid), a contrast agent in magnetic resonance (MR) imaging, is determined by both the intrinsic relaxation rate of water and the relaxivity or relaxation rate contribution (RRC) of Gd-DTPA, as shown by the following equation (Gadian et al. 1985):
$$ 1/\text{T}_{\text{post}} = \text{RRC + 1/T}_{\text{pre}} , $$
where 1/Tpost and 1/Tpre are either T1 or T2 relaxation of water with and without Gd-DTPA. Although this RRC includes complex physical factors, in living tissue it indicates the degree of tissue concentration of Gd-DTPA or its accessibility to tissue water.


Permeability Albumin Adenoma Macromolecule Meningioma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry I, Brant-Zawadzki M, Osaki L, Brasch R, Murovic J, Newton TH (1986) Gd-DTPA in clinical MR of the brain. II. Extraaxial lesions and normal structures. AJNR 7:789–793Google Scholar
  2. Carter LP, Beggs J, Waggener JD (1972) Ultrastructure of three choroid plexus papillomas. Cancer 30:1130–1136PubMedCrossRefGoogle Scholar
  3. Gadian DG, Payne JA, Bryant DJ, Young IR, Carr DH, Bydder GM (1985) Gadolinium-DTPA as a contrast agent in MR imaging - theoretical projections and practical observations. J Comput Assist Tomogr 9:242–251PubMedCrossRefGoogle Scholar
  4. Ham AW (1974) Connective tissue: how fluid passes in and out through capillary walls. In: Ham AW (ed) Histology, 7th edn. Lippincott, Philadelphia, pp 213–215Google Scholar
  5. Hirano A, Dembitzer HM, Zimmerman HM (1972) Fenestrated blood vessels in neurilemoma. Lab Invest 27:305–309PubMedGoogle Scholar
  6. Kasantikul V, Glick AD, Netsky MG (1979) Light and electron microscopic observations of blood vessels in neurilemoma. Arch Pathol Lab Med 103:683–687PubMedGoogle Scholar
  7. Long DM (1973) Vascular ultrastructure in human meningiomas and schwannomas. J Neurosurg 38:409–419PubMedCrossRefGoogle Scholar
  8. Mikhael MA, Ciric IS, Wolff AP (1985) Differentiation of cerebellopontine angle neuromas and meningiomas with MR imaging. J Comput Assist Tomogr 9:852–856PubMedCrossRefGoogle Scholar
  9. Press GA, Hesselink JR (1988) MR imaging of cerebellopontine angle and internal auditory canal lesions at 1.5 T. AJNR 9:241–251Google Scholar
  10. Ramsey HJ (1966) Fine structure of hemangiopericytoma and hemangioendothelioma. Cancer 19:2005–2018PubMedCrossRefGoogle Scholar
  11. Riederer SJ, Bobman SA, Lee JN, Farzaneh F, Wang HZ (1986) Improved precision in calculated T1 MR images using multiple spin-echo acquisition. J Comput Assist Tomogr 10:103–110PubMedCrossRefGoogle Scholar
  12. Schelin U (1962) Chromophobe and acidophil adenomas of the human pituitary gland. A light and electron microscopic study. Acta Pathol Microbiol Scand [Suppl] 158:5–80Google Scholar
  13. Schmiedl U, Ogan M, Paajanen H, Marotti M, Crooks LE, Brito AC, Brasch RC (1987) Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology 162:205–210PubMedGoogle Scholar
  14. Watabe T, Azuma T (1989) T1 and T2 measurement of meningiomas and neuromas before and after Gd-DTPA. AJNR 10:463–470PubMedGoogle Scholar
  15. Weinmann H-J, Brasch RC, Press W-R, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR 142:619–624PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • T. Watabe
    • 1
  • T. Iwata
  1. 1.Department of RadiologyTokai University School of MedicineBohseidai, Isehara City, Kanagawa Pref. 259-11Japan

Personalised recommendations