Investigation of Liver Pathology with Magnetite-Dextran Superparamagnetic Nanoparticles as New MRI Contrast Agent

  • D. Pouliquen
  • R. Perdrisot
  • A. Ermias
  • S. Akoka
  • P. Jallet
  • J. J. le Jeune
Conference paper

Abstract

In the last ten years, many authors have described the preparation of magnetic iron-dextran particles by precipitating an aqueous solution containing ferric chloride, ferrous chloride, and dextran by adding an alkaline base while stirring and heating the solution. Magnetite-Dextran (MD) nanoparticles were obtained by modifying the following aspects of the Molday procedure (Molday and Mackenzie 1982): dextran concentration, Fe3+/FE2+ molar ratio, titration, and heating parameters. The size distribution of the nanoparticles was analyzed with an N4M nanosizer (Coultronics, France) and the distribution of iron core dimensions was examined by transmission electron microscopy (TEM, JEOL 100 B). Dextran and iron concentrations were measured by spectrophotometric methods (phenol/sulphuric acid (Dubois et al. 1956) and HC1 30% (Pouliquen 1988), at 490 nm and 340 nm respectively. Rx and R2 relaxivities were determined on a PC 20 spectrometer (Bruker, France) at 0.47 T, 20 MHz, 4° C, and 37° C. T1 was measured by a nonlinear least squares fit calculation to 8 data points, generated with an inversion-recovery pulse sequence. T2 was obtained from 10 data points, generated with a Meiboom-Gill-Carr-Purcell sequence.

Keywords

Sugar Toxicity Dust Titration Magnetite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buske N, Sonntag H, Götze T (1984) Magnetic fluids; their preparation, stabilization and applications in colloid science. Colloids Surfaces 12:195–202CrossRefGoogle Scholar
  2. Courtoy PJ, Feldman G, Rogier E, Moguilevsky N (1981) Plasma protein synthesis in experimental cirrhosis; morphologic demonstration and functional correlations. Lab Invest 45(1):67–76PubMedGoogle Scholar
  3. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRefGoogle Scholar
  4. Lacassagne A, Buu-Hoi NP, Giao NB, Hurst L, Ferrando R (1967) Comparaison des actions hépatocancérogènes de la diéthylnitrosamine et du p-diméthylaminoazobènzene. Int J Cancer 2:425–133PubMedCrossRefGoogle Scholar
  5. Molday RS, Mackenzie D (1982) Immunospecific ferromagnetic iron-Dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52:353–367PubMedCrossRefGoogle Scholar
  6. Pouliquen D (1988) Conception et évaluation de produits de contraste pour FIRM du proton. Doctoral thesis, University of Rennes, FranceGoogle Scholar
  7. Renshaw PF, Owen CS, MacLaughlin AC, Frey TG, Leigh JS Jr (1986) Ferromagnetic contrast agents: a new approach. Magn Reson Med 3:217–225PubMedCrossRefGoogle Scholar
  8. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR 152:167–173PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • D. Pouliquen
    • 1
  • R. Perdrisot
  • A. Ermias
  • S. Akoka
  • P. Jallet
  • J. J. le Jeune
  1. 1.Laboratoire de BiophysiqueAngersFrance

Personalised recommendations