Advertisement

T-Cells, Stress Proteins, and Pathogenesis of Mycobacterial Infections

  • S. H. E. Kaufmann
  • B. Schoel
  • A. Wand-Württenberger
  • U. Steinhoff
  • M. E. Munk
  • T. Koga
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 155)

Abstract

When a microbial pathogen meets a mammalian organism, different kinds of relationship may evolve. Exotoxin-producing pathogens can harm the host in a dramatic way without becoming too involved themselves. Purulent bacteria colonize extracellular niches from which they can cause acute-type diseases. In both cases, humoral immunity has a profound effect, and normally either type of pathogen is rapidly eliminated once it is taken up by professional phagocytes. So-called intracellular pathogens establish a lifestyle inside host cells, and many of them survive within macrophages at least for some time. Bacteria of this group include Mycobacterium tuberculosis, M. bovis, M. leprae, Salmonella typhi, Legionella pneumophila, and Listeria monocytogenes—the etiologic agents of tuberculosis, leprosy, typhoid fever, Legionnaire’s disease, and listeriosis, respectively. Although macrophages provide a major habitat for these microorganisms, other host cells can be affected as well, with M. leprae-infected Schwann’s cell providing a notable example.

Keywords

Stress Protein Heat Shock Response Mycobacterial Infection Shared Epitope Reactive Oxygen Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardwell JCA, Craig EA (1984) Major heat-shock gene of Drosophila and Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci USA 81: 848–852.PubMedCrossRefGoogle Scholar
  2. Bardwell JCA, Craig EA (1987) Eukaryotic M r 83,000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sci USA 84: 5177–5181.PubMedCrossRefGoogle Scholar
  3. Carbone FR, Moore MW, Sheil JM, Bevan MJ (1988) Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 167: 1767–1779.PubMedCrossRefGoogle Scholar
  4. Chirico WJ, Waters MG, Blobel G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332: 805–810.PubMedCrossRefGoogle Scholar
  5. Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753–762.PubMedCrossRefGoogle Scholar
  6. Collins PL, Hightower LE (1982) Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J Virol 44: 703–707.PubMedGoogle Scholar
  7. Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18: 239–280.PubMedCrossRefGoogle Scholar
  8. Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805.PubMedCrossRefGoogle Scholar
  9. Ellis J (1987) Proteins as molecular chaperones. Nature 328: 378–379.PubMedCrossRefGoogle Scholar
  10. Emmrich F, Thole J, van Embden J, Kaufmann SHE (1986) A recombinant 64 kilo Dalton protein of Mycobacterium bovis BCG specifically stimulated human T4 clones reactive to mycobacterial antigens. J Exp Med 163: 1024–1029.PubMedCrossRefGoogle Scholar
  11. Ferris DK, Harel-Bellan A, Morimoto RI, Welch WJ, Farrar WL (1988) Mitogen and lymphokine stimulation of heat shock proteins in T lymphocytes. Proc Natl Acad Sci USA 85: 3850–3854.PubMedCrossRefGoogle Scholar
  12. Fields PI, Swanson RV, Haidaris CG, Heffrow F (1986) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83: 5189–5193.PubMedCrossRefGoogle Scholar
  13. Garry RF, Ulug ET, Bose HR (1983) Induction of stress proteins in Sindbis virus-and vesicular stomatitis virus-infected cells. Virology 129: 319–332.PubMedCrossRefGoogle Scholar
  14. Garsia RJ, Hellqvist L, Booth RJ, Radford AJ, Britton WJ, Astbury L, Trent RJ, Basten A (1989) Homology of the 70-kilodalton antigens from Mycobacterium leprae and Mycobacterium bovis with the Mycobacterium tuberculosis 71-kilodalton antigen and with the conserved heat shock protein 70 of eukaryotes. Infect Immun 57: 204–212.PubMedGoogle Scholar
  15. Gerner EW, Boone R, Connor WG, Hicks JA, Boone MLM (1976) A transient thermotolerant survival response produced by single thermal doses in HeLa cells. Cancer Res. 36: 1035–1040.PubMedGoogle Scholar
  16. Hahn H, Kaufmann SHE (1981) Role of cell-mediated immunity in bacterial infections. Rev Infect Dis 3: 1221–1250.PubMedCrossRefGoogle Scholar
  17. Hansen K, Bangsborg JM, Fjordvang H, Strandberg-Pedersen N, Hindersson P (1988) Immunochemical characterization of and isolation of the gene for a Borrelia burgdorferi immunodominant 60-kilodalton antigen common to a wide range of bacteria. Infect Immun 56: 2047–2053.PubMedGoogle Scholar
  18. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334.PubMedCrossRefGoogle Scholar
  19. Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat Res 66: 505–518.PubMedCrossRefGoogle Scholar
  20. Hindersson P, Knudsen JD, Axelsen NH (1987) Cloning and expression of Treponema pallidum common antigen (Tp-4) in E. coli K-12. J Gen Microbiol 133: 587–596.PubMedGoogle Scholar
  21. Holoshitz J, Koning F, Coligan JE, DeBruyn J, Strober S (1989) Isolation of CD4 CD8 mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 339: 226–229.PubMedCrossRefGoogle Scholar
  22. Janis E, Kaufmann SHE, Schwartz RH, Pardoll DM (1989) Activation of γδ+ T cells in the primary immune response to Mycobacterium tuberculosis. Science 244: 713–716.PubMedCrossRefGoogle Scholar
  23. Jindal S, Dudani AK, Harley CB, Singh B, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9: 2279–2283.PubMedGoogle Scholar
  24. Kappler JW, Staerz U, White J, Marrack P (1988) Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature 332: 35–40.PubMedCrossRefGoogle Scholar
  25. Kaufmann SHE (1986) Immunology of leprosy: new facts, future perspectives. Microb Pathogen 1: 107–114.CrossRefGoogle Scholar
  26. Kaufmann SHE (1987) Towards new leprosy and tuberculosis vaccines. Microbiol Sci 4: 324–328.PubMedGoogle Scholar
  27. Kaufmann SHE (1989) Immunity to bacteria and fungi. Curr Opin Immunol 1: 431–440.PubMedCrossRefGoogle Scholar
  28. Kaufmann SHE, Hug E, DeLibero G (1986) Listeria monocytogenes reactive T lymphocyte clones with cytolytic activity against infected target cells. J Exp Med 164: 363–368.PubMedCrossRefGoogle Scholar
  29. Kaufmann SHE, Väth U, Thole JER, van Embden JDA, Emmrich F (1987) Ennumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64 kiloDalton protein. Eur J Immunol 17: 351–357.PubMedCrossRefGoogle Scholar
  30. Khandjian EW, Türler H (1983) Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol Cell Biol 3: 1–8.PubMedGoogle Scholar
  31. Koga T, Wand-Württenberger A, DeBruyn J, Munk ME, Schoel B, Kaufmann SHE (1989) T cells and antibodies against a common bacterial heat shock protein recognize stressed macrophages. Science 245: 1112–1115.PubMedCrossRefGoogle Scholar
  32. Lamb JR, Ivanyi J, Rees ADM, Rothbard JB, Howland K, Young RA, Young DB (1987) Mapping of T cell epitopes using recombinant antigens and synthetic peptides. EMBO J 6: 1245–1249.PubMedGoogle Scholar
  33. LaThangue NB, Latchman DS (1987) Nuclear accumulation of a heat-shock 70-like protein during herpes simplex virus replication. Biosci 7: 475–483.CrossRefGoogle Scholar
  34. LaThangue NB, Shriver K, Dawson C, Chan WL (1984) Herpes simplex virus infection causes the accumulation of a heat-shock protein. EMBO J 3: 267–277.PubMedGoogle Scholar
  35. Lindquist S (1986) The heat shock response. Annu Rev Biochem 55: 1151–1191.PubMedCrossRefGoogle Scholar
  36. MacDonald HR, Nabholz M (1986) T-cell activation, Annu Rev Cell Biol 2: 231–253.PubMedCrossRefGoogle Scholar
  37. MacDonald HR, Schneider R, Lees R, Howe RC, Achaorbea H, Festenstein H, Zinkernagel RM, Hengartner H (1988) T-cell receptor V-beta use predicts reactivity and tolerance to Mis-alpha-encoded antigens. Nature 332: 40–45.PubMedCrossRefGoogle Scholar
  38. McMullin TW, Hallberg RL (1988) A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the E. coli groEL gene. Mol Cell Biol 8: 371–380.PubMedGoogle Scholar
  39. Minota S, Cameron B, Welch WJ, Winfield JB (1988a) Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus. J Exp Med 168: 1475–1480.PubMedCrossRefGoogle Scholar
  40. Minota S, Koyasu S, Yahara I, Winfield J (1988b) Autoantibodies to the heat-shock protein hsp 90 in systemic lupus erythematosus. J Clin Invest 81: 106–109.PubMedCrossRefGoogle Scholar
  41. Modlin RL, Pirmez C, Hofman FM, Torigian V, Uyemura K, Rea TH, Bloom BR, Brenner MB (1989) Antigen-specific T cell receptor γδ bearing lymphocytes accumulate in human infectious disease lesions. Nature 339: 544–548.PubMedCrossRefGoogle Scholar
  42. Modrow S, Höflacher B, Meliert W, Erfle V, Wahren B, Wolf H (1989) Use of synthetic oligopeptides in identification and characterization of immunological functions in the amino acid sequence of the envelope protein of HIV-1. J Acquired Imm Def Syndr 2: 120–127.Google Scholar
  43. Morgan RW, Christman MF, Jacobson FS, Storz G, Ames BN (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci USA 83: 8059–8063.PubMedCrossRefGoogle Scholar
  44. Moulder JW (1985) Comparative biology of intracellular parasitism. Microbiol Rev 49: 298–337.PubMedGoogle Scholar
  45. Munk ME, Schoel B, Kaufmann SHE (1988) T cell responses of normal individuals towards recombinant protein antigens of Mycobacterium tuberculosis. Eur J Immunol 18: 1835–1838.PubMedCrossRefGoogle Scholar
  46. Munk ME, Schoel B, Modrow S, Karr RW, Young RA, Kaufmann SHE (1989) Cytolytic CD4+ T lymphocytes from healthy individuals with specificity to self epitopes shared by the mycobacterial and human 65 kDa heat shock protein. J Immunol (in press).Google Scholar
  47. Nevins JR (1982) Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29: 913–919.PubMedCrossRefGoogle Scholar
  48. Newport GR, Culpepper J, Agabian N (1988) Heat shock response and parasitism. Parasitol Today 4: 306–312.PubMedCrossRefGoogle Scholar
  49. Notarianni EL, Preston CM (1982) Activation of cellular stress protein genes by herpes simplex virus temperature-sensitive mutants which overproduce immediate early polypeptides. Virology 123: 113–122.PubMedCrossRefGoogle Scholar
  50. O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK (1989) Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen-derived Mycobacterium tuberculosis. Cell 57: 667–674.PubMedCrossRefGoogle Scholar
  51. Oftung F, Mustafa AS, Husson R, Young RA, Godal T (1987) Human T cell clones recognize two abundant Mycobacterium tuberculosis protein antigens expressed in Escherichia coli. J Immunol 138: 927–931.PubMedGoogle Scholar
  52. Ottenhoff THM, Kale AB, van Embden JDA, Thole JER, Kiessling R (1988) The recombinant 65 kilodalton heat shock protein of Mycobacterium bovis BCG/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med 168:1947.PubMedCrossRefGoogle Scholar
  53. Pelham H (1988) Coming in from the cold. Nature 332: 776–777.PubMedCrossRefGoogle Scholar
  54. Polla BS (1988) A role for heat shock proteins in inflammation? Immunol Today 9: 134–137.PubMedCrossRefGoogle Scholar
  55. Polla BS, Healy AM, Wojno WC, Krane SM (1987) Hormone 1α, 25-di-hydroxyvitamin D3 modulated heat shock response in monocytes. Am J Physical 252: C640–C649.Google Scholar
  56. Res PCM, Schaar CG, Breedveld FC, van Eden W, van Embden JDA, Cohen IR, de Vries RRP (1988) Synovial fluid T cell reactivity against 65 kD heat shock protein of mycobacteria in early chronic arthritis. Lancet ii: 478–480.CrossRefGoogle Scholar
  57. Ridley DS, Job CK (1985) The pathology of leprosy. In: Hastings RC (ed) Leprosy. Churchill Livingstone, Edinburgh.Google Scholar
  58. Shinnick TM (1987) The 65-kilodalton antigen of Mycobacterium tuberculosis. J Bacteriol 169: 1080–1088.PubMedGoogle Scholar
  59. Shinnick TM, Vodkin MH, Williams JL (1988) The Mycobacterium tuberculosis 65 kDa antigen is a heat shock protein which corresponds to common antigen and to the E. coli groEL protein. Infect Immun 56: 446–451.PubMedGoogle Scholar
  60. Steinhoff U, Kaufmann SHE (1988) Specific lysis by CD8+ T cells of Schwann cells expressing Mycobacterium leprae antigens. Eur J Immunol 18: 973–976.CrossRefGoogle Scholar
  61. Steinhoff U, Golecki JR, Kazda J, Kaufmann SHE (1989) Evidence for phagosome lysosome fusion in Mycobacterium leprae infected murine Schwann cells. Infect Immun 57: 1008–1010.PubMedGoogle Scholar
  62. Thole JER, Keulen WJ, Kolk AHJ, Groothuis DG, Berwald LG, Tiesjema RH, van Embden JDA (1987) Characterization, sequence determination, and immunogenicity of a 64-kilodalton protein of Mycobacterium bovis BCG expressed in Escherichia coli K-12. Infect Immun 55: 1466–1475.PubMedGoogle Scholar
  63. Thole JER, Hindersson P, DeBruyn J, Cremers F, van der Zee J, de Cock H, Tommassen J, van Eden W, van Embden JDA (1988) Antigenic relatedness of a strongly immunogenic 65kDa mycobacterial protein antigen with a similarly sized ubiquitous bacterial common antigen. Microb Pathogen 4: 71–83.CrossRefGoogle Scholar
  64. Ungewickell E (1985) The 70kDa mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J 4: 3385–3391.PubMedGoogle Scholar
  65. Van Buskirk A, Crump BL, Pierce SK (1989) A peptide binding protein having a role in antigen presentation is a member of the hsp 70 heat shock family. J Exp Med (in press).Google Scholar
  66. Van Eden W, Thole JER, van der Zee R, Noordzij A, van Embden JDA, Hensen EJ, Cohen IR (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331: 171–173.PubMedCrossRefGoogle Scholar
  67. Vodkin MH, Williams JC (1988) A heat shock operon in Coxiella burnetii produces a major antigen homologous to a protein in both mycobacteria and Escherichia coli. J Bacteriol 170: 1227–1234.PubMedGoogle Scholar
  68. Young DB, Ivanyi J, Cox JH, Lamb JR (1987) Th 65 kDa antigen of mycobacteria—a common bacterial protein? Immunol Today 8: 215–219.CrossRefGoogle Scholar
  69. Young D, Lathigra R, Hendrix R, Sweetser D, Young RA (1988) Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci USA 85: 4267–4270.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • S. H. E. Kaufmann
    • 1
  • B. Schoel
    • 1
  • A. Wand-Württenberger
    • 1
  • U. Steinhoff
    • 1
  • M. E. Munk
    • 1
  • T. Koga
    • 1
  1. 1.Department of Medical Microbiology and ImmunologyUniversity of UlmUlmGermany

Personalised recommendations