Skip to main content

T-Cells, Stress Proteins, and Pathogenesis of Mycobacterial Infections

  • Conference paper
T-Cell Paradigms in Parasitic and Bacterial Infections

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 155))

Abstract

When a microbial pathogen meets a mammalian organism, different kinds of relationship may evolve. Exotoxin-producing pathogens can harm the host in a dramatic way without becoming too involved themselves. Purulent bacteria colonize extracellular niches from which they can cause acute-type diseases. In both cases, humoral immunity has a profound effect, and normally either type of pathogen is rapidly eliminated once it is taken up by professional phagocytes. So-called intracellular pathogens establish a lifestyle inside host cells, and many of them survive within macrophages at least for some time. Bacteria of this group include Mycobacterium tuberculosis, M. bovis, M. leprae, Salmonella typhi, Legionella pneumophila, and Listeria monocytogenes—the etiologic agents of tuberculosis, leprosy, typhoid fever, Legionnaire’s disease, and listeriosis, respectively. Although macrophages provide a major habitat for these microorganisms, other host cells can be affected as well, with M. leprae-infected Schwann’s cell providing a notable example.

Work from this laboratory received financial support to S.H.E.K. from: UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases; the WHO as part of its Program For Vaccine Development; Sonderforschungs-bereich 322; German Leprosy Relief Association; EEC-India Science and Technology Cooperation Program. S.H.E.K. is recipient of the A. Krupp award for young professors; T.K. is supported by the Alexander von Humboldt Foundetion; and M.E.M. is supported by the Conselho Nacional de Deservolvimento Cientifico e Tecnologico, Brazil

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardwell JCA, Craig EA (1984) Major heat-shock gene of Drosophila and Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci USA 81: 848–852.

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, Craig EA (1987) Eukaryotic M r 83,000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sci USA 84: 5177–5181.

    Article  PubMed  CAS  Google Scholar 

  • Carbone FR, Moore MW, Sheil JM, Bevan MJ (1988) Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 167: 1767–1779.

    Article  PubMed  CAS  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332: 805–810.

    Article  PubMed  CAS  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753–762.

    Article  PubMed  CAS  Google Scholar 

  • Collins PL, Hightower LE (1982) Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J Virol 44: 703–707.

    PubMed  CAS  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18: 239–280.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805.

    Article  PubMed  CAS  Google Scholar 

  • Ellis J (1987) Proteins as molecular chaperones. Nature 328: 378–379.

    Article  PubMed  CAS  Google Scholar 

  • Emmrich F, Thole J, van Embden J, Kaufmann SHE (1986) A recombinant 64 kilo Dalton protein of Mycobacterium bovis BCG specifically stimulated human T4 clones reactive to mycobacterial antigens. J Exp Med 163: 1024–1029.

    Article  PubMed  CAS  Google Scholar 

  • Ferris DK, Harel-Bellan A, Morimoto RI, Welch WJ, Farrar WL (1988) Mitogen and lymphokine stimulation of heat shock proteins in T lymphocytes. Proc Natl Acad Sci USA 85: 3850–3854.

    Article  PubMed  CAS  Google Scholar 

  • Fields PI, Swanson RV, Haidaris CG, Heffrow F (1986) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83: 5189–5193.

    Article  PubMed  CAS  Google Scholar 

  • Garry RF, Ulug ET, Bose HR (1983) Induction of stress proteins in Sindbis virus-and vesicular stomatitis virus-infected cells. Virology 129: 319–332.

    Article  PubMed  CAS  Google Scholar 

  • Garsia RJ, Hellqvist L, Booth RJ, Radford AJ, Britton WJ, Astbury L, Trent RJ, Basten A (1989) Homology of the 70-kilodalton antigens from Mycobacterium leprae and Mycobacterium bovis with the Mycobacterium tuberculosis 71-kilodalton antigen and with the conserved heat shock protein 70 of eukaryotes. Infect Immun 57: 204–212.

    PubMed  CAS  Google Scholar 

  • Gerner EW, Boone R, Connor WG, Hicks JA, Boone MLM (1976) A transient thermotolerant survival response produced by single thermal doses in HeLa cells. Cancer Res. 36: 1035–1040.

    PubMed  CAS  Google Scholar 

  • Hahn H, Kaufmann SHE (1981) Role of cell-mediated immunity in bacterial infections. Rev Infect Dis 3: 1221–1250.

    Article  PubMed  CAS  Google Scholar 

  • Hansen K, Bangsborg JM, Fjordvang H, Strandberg-Pedersen N, Hindersson P (1988) Immunochemical characterization of and isolation of the gene for a Borrelia burgdorferi immunodominant 60-kilodalton antigen common to a wide range of bacteria. Infect Immun 56: 2047–2053.

    PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334.

    Article  PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat Res 66: 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Hindersson P, Knudsen JD, Axelsen NH (1987) Cloning and expression of Treponema pallidum common antigen (Tp-4) in E. coli K-12. J Gen Microbiol 133: 587–596.

    PubMed  CAS  Google Scholar 

  • Holoshitz J, Koning F, Coligan JE, DeBruyn J, Strober S (1989) Isolation of CD4 CD8 mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 339: 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Janis E, Kaufmann SHE, Schwartz RH, Pardoll DM (1989) Activation of γδ+ T cells in the primary immune response to Mycobacterium tuberculosis. Science 244: 713–716.

    Article  PubMed  CAS  Google Scholar 

  • Jindal S, Dudani AK, Harley CB, Singh B, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9: 2279–2283.

    PubMed  CAS  Google Scholar 

  • Kappler JW, Staerz U, White J, Marrack P (1988) Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature 332: 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SHE (1986) Immunology of leprosy: new facts, future perspectives. Microb Pathogen 1: 107–114.

    Article  CAS  Google Scholar 

  • Kaufmann SHE (1987) Towards new leprosy and tuberculosis vaccines. Microbiol Sci 4: 324–328.

    PubMed  CAS  Google Scholar 

  • Kaufmann SHE (1989) Immunity to bacteria and fungi. Curr Opin Immunol 1: 431–440.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SHE, Hug E, DeLibero G (1986) Listeria monocytogenes reactive T lymphocyte clones with cytolytic activity against infected target cells. J Exp Med 164: 363–368.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SHE, Väth U, Thole JER, van Embden JDA, Emmrich F (1987) Ennumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64 kiloDalton protein. Eur J Immunol 17: 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Khandjian EW, Türler H (1983) Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol Cell Biol 3: 1–8.

    PubMed  CAS  Google Scholar 

  • Koga T, Wand-Württenberger A, DeBruyn J, Munk ME, Schoel B, Kaufmann SHE (1989) T cells and antibodies against a common bacterial heat shock protein recognize stressed macrophages. Science 245: 1112–1115.

    Article  PubMed  CAS  Google Scholar 

  • Lamb JR, Ivanyi J, Rees ADM, Rothbard JB, Howland K, Young RA, Young DB (1987) Mapping of T cell epitopes using recombinant antigens and synthetic peptides. EMBO J 6: 1245–1249.

    PubMed  CAS  Google Scholar 

  • LaThangue NB, Latchman DS (1987) Nuclear accumulation of a heat-shock 70-like protein during herpes simplex virus replication. Biosci 7: 475–483.

    Article  CAS  Google Scholar 

  • LaThangue NB, Shriver K, Dawson C, Chan WL (1984) Herpes simplex virus infection causes the accumulation of a heat-shock protein. EMBO J 3: 267–277.

    PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55: 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald HR, Nabholz M (1986) T-cell activation, Annu Rev Cell Biol 2: 231–253.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald HR, Schneider R, Lees R, Howe RC, Achaorbea H, Festenstein H, Zinkernagel RM, Hengartner H (1988) T-cell receptor V-beta use predicts reactivity and tolerance to Mis-alpha-encoded antigens. Nature 332: 40–45.

    Article  PubMed  CAS  Google Scholar 

  • McMullin TW, Hallberg RL (1988) A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the E. coli groEL gene. Mol Cell Biol 8: 371–380.

    PubMed  CAS  Google Scholar 

  • Minota S, Cameron B, Welch WJ, Winfield JB (1988a) Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus. J Exp Med 168: 1475–1480.

    Article  PubMed  CAS  Google Scholar 

  • Minota S, Koyasu S, Yahara I, Winfield J (1988b) Autoantibodies to the heat-shock protein hsp 90 in systemic lupus erythematosus. J Clin Invest 81: 106–109.

    Article  PubMed  CAS  Google Scholar 

  • Modlin RL, Pirmez C, Hofman FM, Torigian V, Uyemura K, Rea TH, Bloom BR, Brenner MB (1989) Antigen-specific T cell receptor γδ bearing lymphocytes accumulate in human infectious disease lesions. Nature 339: 544–548.

    Article  PubMed  CAS  Google Scholar 

  • Modrow S, Höflacher B, Meliert W, Erfle V, Wahren B, Wolf H (1989) Use of synthetic oligopeptides in identification and characterization of immunological functions in the amino acid sequence of the envelope protein of HIV-1. J Acquired Imm Def Syndr 2: 120–127.

    Google Scholar 

  • Morgan RW, Christman MF, Jacobson FS, Storz G, Ames BN (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci USA 83: 8059–8063.

    Article  PubMed  CAS  Google Scholar 

  • Moulder JW (1985) Comparative biology of intracellular parasitism. Microbiol Rev 49: 298–337.

    PubMed  CAS  Google Scholar 

  • Munk ME, Schoel B, Kaufmann SHE (1988) T cell responses of normal individuals towards recombinant protein antigens of Mycobacterium tuberculosis. Eur J Immunol 18: 1835–1838.

    Article  PubMed  CAS  Google Scholar 

  • Munk ME, Schoel B, Modrow S, Karr RW, Young RA, Kaufmann SHE (1989) Cytolytic CD4+ T lymphocytes from healthy individuals with specificity to self epitopes shared by the mycobacterial and human 65 kDa heat shock protein. J Immunol (in press).

    Google Scholar 

  • Nevins JR (1982) Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29: 913–919.

    Article  PubMed  CAS  Google Scholar 

  • Newport GR, Culpepper J, Agabian N (1988) Heat shock response and parasitism. Parasitol Today 4: 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Notarianni EL, Preston CM (1982) Activation of cellular stress protein genes by herpes simplex virus temperature-sensitive mutants which overproduce immediate early polypeptides. Virology 123: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK (1989) Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen-derived Mycobacterium tuberculosis. Cell 57: 667–674.

    Article  PubMed  Google Scholar 

  • Oftung F, Mustafa AS, Husson R, Young RA, Godal T (1987) Human T cell clones recognize two abundant Mycobacterium tuberculosis protein antigens expressed in Escherichia coli. J Immunol 138: 927–931.

    PubMed  CAS  Google Scholar 

  • Ottenhoff THM, Kale AB, van Embden JDA, Thole JER, Kiessling R (1988) The recombinant 65 kilodalton heat shock protein of Mycobacterium bovis BCG/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med 168:1947.

    Article  PubMed  CAS  Google Scholar 

  • Pelham H (1988) Coming in from the cold. Nature 332: 776–777.

    Article  PubMed  CAS  Google Scholar 

  • Polla BS (1988) A role for heat shock proteins in inflammation? Immunol Today 9: 134–137.

    Article  PubMed  CAS  Google Scholar 

  • Polla BS, Healy AM, Wojno WC, Krane SM (1987) Hormone 1α, 25-di-hydroxyvitamin D3 modulated heat shock response in monocytes. Am J Physical 252: C640–C649.

    CAS  Google Scholar 

  • Res PCM, Schaar CG, Breedveld FC, van Eden W, van Embden JDA, Cohen IR, de Vries RRP (1988) Synovial fluid T cell reactivity against 65 kD heat shock protein of mycobacteria in early chronic arthritis. Lancet ii: 478–480.

    Article  Google Scholar 

  • Ridley DS, Job CK (1985) The pathology of leprosy. In: Hastings RC (ed) Leprosy. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Shinnick TM (1987) The 65-kilodalton antigen of Mycobacterium tuberculosis. J Bacteriol 169: 1080–1088.

    PubMed  CAS  Google Scholar 

  • Shinnick TM, Vodkin MH, Williams JL (1988) The Mycobacterium tuberculosis 65 kDa antigen is a heat shock protein which corresponds to common antigen and to the E. coli groEL protein. Infect Immun 56: 446–451.

    PubMed  CAS  Google Scholar 

  • Steinhoff U, Kaufmann SHE (1988) Specific lysis by CD8+ T cells of Schwann cells expressing Mycobacterium leprae antigens. Eur J Immunol 18: 973–976.

    Article  Google Scholar 

  • Steinhoff U, Golecki JR, Kazda J, Kaufmann SHE (1989) Evidence for phagosome lysosome fusion in Mycobacterium leprae infected murine Schwann cells. Infect Immun 57: 1008–1010.

    PubMed  CAS  Google Scholar 

  • Thole JER, Keulen WJ, Kolk AHJ, Groothuis DG, Berwald LG, Tiesjema RH, van Embden JDA (1987) Characterization, sequence determination, and immunogenicity of a 64-kilodalton protein of Mycobacterium bovis BCG expressed in Escherichia coli K-12. Infect Immun 55: 1466–1475.

    PubMed  CAS  Google Scholar 

  • Thole JER, Hindersson P, DeBruyn J, Cremers F, van der Zee J, de Cock H, Tommassen J, van Eden W, van Embden JDA (1988) Antigenic relatedness of a strongly immunogenic 65kDa mycobacterial protein antigen with a similarly sized ubiquitous bacterial common antigen. Microb Pathogen 4: 71–83.

    Article  CAS  Google Scholar 

  • Ungewickell E (1985) The 70kDa mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J 4: 3385–3391.

    PubMed  CAS  Google Scholar 

  • Van Buskirk A, Crump BL, Pierce SK (1989) A peptide binding protein having a role in antigen presentation is a member of the hsp 70 heat shock family. J Exp Med (in press).

    Google Scholar 

  • Van Eden W, Thole JER, van der Zee R, Noordzij A, van Embden JDA, Hensen EJ, Cohen IR (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331: 171–173.

    Article  PubMed  Google Scholar 

  • Vodkin MH, Williams JC (1988) A heat shock operon in Coxiella burnetii produces a major antigen homologous to a protein in both mycobacteria and Escherichia coli. J Bacteriol 170: 1227–1234.

    PubMed  CAS  Google Scholar 

  • Young DB, Ivanyi J, Cox JH, Lamb JR (1987) Th 65 kDa antigen of mycobacteria—a common bacterial protein? Immunol Today 8: 215–219.

    Article  CAS  Google Scholar 

  • Young D, Lathigra R, Hendrix R, Sweetser D, Young RA (1988) Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci USA 85: 4267–4270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaufmann, S.H.E., Schoel, B., Wand-Württenberger, A., Steinhoff, U., Munk, M.E., Koga, T. (1990). T-Cells, Stress Proteins, and Pathogenesis of Mycobacterial Infections. In: Kaufmann, S.H.E. (eds) T-Cell Paradigms in Parasitic and Bacterial Infections. Current Topics in Microbiology and Immunology, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74983-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74983-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74985-8

  • Online ISBN: 978-3-642-74983-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics