Skip to main content

The Leukocyte Cell Surface Receptor(s) for the iC3b Product of Complement

  • Conference paper
The Third Component of Complement

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 153))

Abstract

The third component of complement (C3) may be activated on a cell surface by either the classical or the alternative complement pathways and is covalently bound to the cell surface as C3b. C3b is a cofactor in the activation of the terminal compoments of C5-C9. In addition, it serves as the ligand for the type 1 complement receptor (CR1). C3b loses both of these functions when it undergoes proteolytic cleavage to iC3b and C3f by factor I. The relatively stable iC3b opsonin may then undergo proteolysis to C3c and C3dg in the presence of serum. Both iC3b and C3dg remain surface bound and are recognized by the leukocyte type 3 complement receptor (CR3) and the type 2 complement receptor (CR2), respectively. Of the surface-bound fragments of C3, iC3b is probably the most stable of the cell-associated C3 fragments and is thought to play a major role in the complement-mediated clearance of micro-organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aderem A A, Wright SD, Silverstein SC, Cohn ZA (1985) Ligated complement receptors do not activate the arachidonate acid cascade in resident peritoneal macrophages. J Exp Med 161: 617–622

    PubMed  CAS  Google Scholar 

  • Altieri DC,. Edgington TS (1988a) The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J Biol Chem 263: 7007–7015

    PubMed  CAS  Google Scholar 

  • Altieri DC, Edgington TS (1988b) A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CDllb/CD18 (Mac-1) J Immunol 141:2656–2660

    PubMed  CAS  Google Scholar 

  • Altieri DC, Bader R, Mannucci PM, Edgington TS (1988) Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol 107: 1893–1900

    PubMed  CAS  Google Scholar 

  • Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and pl50,95 glycoproteins. Annu Rev Med 38: 175–194

    PubMed  CAS  Google Scholar 

  • Anderson DC, Schmalstieg FC, Arnaout MA, Kohl S, Tosi MF, Dana N, Buffone GJ, Hughes BJ, Brinkley BR, Dickey WD, Abramson JS, Springer TA, Boxer LA, Hollers JM, Smith CW (1984) Abnormalities of polymorphonuclear leukocyte associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): common relationship to diminished cell adherence. J Clin Invest 74: 536–551

    PubMed  CAS  Google Scholar 

  • Anderson DC, Schmalstieg FC, Finegold MJ, Hughes BJ, Rothlein R, Miller LJ, Kohl S, Tosi MF, Jacobs RL, Waldrop TC, Goldman AS, Shearer WT, Springer TA (1985) The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis 152:668–689

    PubMed  CAS  Google Scholar 

  • Anderson DC, Miller LJ, Schmalstieg FC, Rothlein R, Springer TA (1986) Contribution of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies. J Immunol 137: 15–27

    PubMed  CAS  Google Scholar 

  • Arfors K-E, Lindberg C, Lindblom L, Lundnerg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex CD 18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69: 338–340

    PubMed  CAS  Google Scholar 

  • Argraves WS, Suzuki S, Arai H, Thompson K, Pierschbacher MD, Ruoslahti E (1987) Amino acid sequence of the human fibronectin receptor. J Cell Biol 105: 1183–1190

    PubMed  CAS  Google Scholar 

  • Arnaout MA, Pitt J, Cohen HJ, Melamed J, Rosen FS, Schlossman SF, Colten HR (1982) Deficiency of a granulocyte membrane glycoprotein in a boy with recurrent bacterial infections. N Engl J Med 306: 693–699

    PubMed  CAS  Google Scholar 

  • Arnaout MA, Gupta SK, Pierce MW, Tenen DG (1988a) Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mol (complement receptor type 3). J Cell Biol 106: 2153–2158

    PubMed  CAS  Google Scholar 

  • Arnaout MA, Lanier LL, Faller DV (1988b) Relative contribution of the leukocyte molecule Mol, LFA-1, and pl 50,95 (LeuM5) in adhesion of granulocytes and monocytes to vascular endothelium is tissue-and stimulus-specific. J Cell Physiol 137: 305–309

    PubMed  CAS  Google Scholar 

  • Bainton DF, Miller LJ, Kishimoto TK, Springer TA (1987) Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils. J Exp Med 166: 1641–1653

    PubMed  CAS  Google Scholar 

  • Beatty PG, Ledbetter JA, Martin PJ, Price TH, Hansen JA (1983) Definition of a common leukocyte-surface antigen associated with diverse cell-mediated immune function. J Immunol 131:2913–2916

    PubMed  CAS  Google Scholar 

  • Beller DI, Springer TA, Schreiber RD (1982) Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 156: 1000–1009

    PubMed  CAS  Google Scholar 

  • Bennett JS, Vilaire G, Cines DB (1982) Identification of the fibrinogen receptor on human platelets by photoaffmity labeling. J Biol Chem 257: 8049–8054

    PubMed  CAS  Google Scholar 

  • Bentley DR (1986) Primary structure of human complement component C2: homology to two unrelated protein families. Biochem J 239: 339–345

    PubMed  CAS  Google Scholar 

  • Berger M, O’Shea J, Cross AS, Folks TM, Chused TM, Brown EJ, Frank MM (1984) Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. J Clin Invest 74: 1566–1571

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA (1987) Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 84: 9238–9242

    PubMed  CAS  Google Scholar 

  • Bianco C, Griffin FM, Silverstein SC (1975) Studies of the macrophage complement receptor: alteration of receptor function upon macrophage activation. J Exp Med 141: 1279–1290

    Google Scholar 

  • Blackwell JM, Ezekowitz RAB, Roberts MB, Channon JY, Sim RB, Gordon S (1985) Macrophage complement and lectin-like receptors bind Leishmani. in the absence of serum. J Exp Med 162: 324–331

    PubMed  CAS  Google Scholar 

  • Borregaard N, Miller LJ, Springer TA (1987) Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science 237: 1204–1206

    PubMed  CAS  Google Scholar 

  • Breard J, Reinhertz EL, Kung PC, Goldstein G, Schlossman SF (1980) A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol 124: 1943–1946

    PubMed  CAS  Google Scholar 

  • Bullock WE, Wright SD (1987) Role of the adherence-promoting receptors, CR3, LFA-1 and pl50,95 in binding of Histoplasma capsulatu. by human macrophages. J Exp Med 165: 195–210

    PubMed  CAS  Google Scholar 

  • Button LL, McMaster WR (1988) Molecular cloning of the major surface antigen of Leishmani.. J Exp Med 167: 724–729

    PubMed  CAS  Google Scholar 

  • Buyon JP, Abramson SB, Philips MR, Slade SG, Ross GD, Weissmann G, Winchester RJ (1988) Dissociation between increased surface expression of gpl65/95 and homotypic neutrophil aggregation. J Immunol 140: 3156–3160

    PubMed  CAS  Google Scholar 

  • Carlo JR, Ruddy S, Studer E, Conrad DH (1979) Complement receptor binding of C3b-coated cells treated with C3b-inactivator, βlH-globulin and trypsin. J Immunol 123: 523–528

    PubMed  CAS  Google Scholar 

  • Cobbold S, Hale G, Waldmann H (1987) Non-lineage, LFA-1 family, and leucocyte common antigens: new and previously defined clusters. In: McMichael AJ (ed) Leucocyte typing III: white cell differentiation antigens. Oxford University Press, Oxford, pp 788–801

    Google Scholar 

  • Coller BS (1985) A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet glycoprotein IIb/IIIa complex. J Clin Invest 76: 101–108

    PubMed  CAS  Google Scholar 

  • Corbi AL, Miller LJ, O’Connor K, Larson RS, Springer TA (1987) cDNA cloning and complete primary structure of the a subunit of a leukocyte adhesion glycoprotein, pl 50,95. EM BO J 6: 4023–4028

    CAS  Google Scholar 

  • Corbi AL, Kishimoto TK, Miller LJ, Springer TA (1988a) The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD l1b) a subunit: cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B. J Biol Chem 263: 12403–12411

    PubMed  CAS  Google Scholar 

  • Corbi AL, Larson RS, Kishimoto TK, Springer TA, Morgan CC (1988b) Chromosomal location of the genes encoding the leukocyte adhesion receptors LFA-1, Mac-1 and pl95,95: identification of a gene cluster involved in cell adhesion. J Exp Med 167: 1597–1607

    PubMed  CAS  Google Scholar 

  • Dana N, Todd RF, Pitt J, Springer TA, Arnaout MA (1984) Deficiency of a surface membrane glycoprotein (Mol) in man. J Clin Invest 73: 153–159

    PubMed  CAS  Google Scholar 

  • Dana N, Styrt B, Griffin JD, Todd RF, Klempner MS, Arnaout MA (1986) Two functional domains in the phagocyte membrane glycoprotein Mol identified with monoclonal antibodies. J Immunol 137: 3259–3263

    PubMed  CAS  Google Scholar 

  • Dana N, Clayton LK, Tennen DG, Pierce MW, Lachmann PJ, Law SA, Arnaout MA (1987) Leukocytes from four patients with complete or partial Leu-CAM deficiency contain the common β-subunit precursor and β-subunit messenger RNA. J Clin Invest 79: 1010–1015

    PubMed  CAS  Google Scholar 

  • Detmers PA, Wright SD, Olsen E, Kimball B, Cohn ZA (1987) Aggregation of complement receptors on human neutrophils in the absence of ligand. J Cell Biol 105: 1137–1145

    PubMed  CAS  Google Scholar 

  • Dimanche MT, Deist FL, Fischer A, Arnaout MA, Griscelli C, Lisowska-Grospierre B (1987) LFA β-chain synthesis and degradation in patients with leukocyte-adhesive proteins deficiency. Eur J Immunol 17: 417–419

    PubMed  CAS  Google Scholar 

  • Dimanche-Boitrel MT, Guyot A, de Saint-Basile G, Fischer A, Groscelli C, Lisowska-Gris pierre B (1988) Heterogeneity in the molecular defect leading to the leukocyte adhesion deficiency. Eur J Immunol 18: 1575–1579

    PubMed  CAS  Google Scholar 

  • DiVirgillio F, Meyer BC, Greenburg S, Silverstein SC (1988) Fc-receptor mediated phagocytosis occurs in macrophages at vanishingly low cytosolic calcium levels. J Cell Biol 106:675–686

    Google Scholar 

  • D’Souza SE, Ginsberg MH, Burke TA, Lam SCT, Flow EF (1988) Localization of an Arg-Gly-Asp recognition site with an integrin adhesion receptor. Science 242: 91–93

    CAS  Google Scholar 

  • Ezekowitz RAB, Sim RB, Hill M, Gordon S (1984) Local opsonisation by secreted macrophage complement components: role of receptors for complement in the uptake of zymosan. J Exp Med 159: 244–260

    PubMed  CAS  Google Scholar 

  • Fischer A, Lisowska-Grospierre B, Anderson DC, Springer TA (1988) Leukocyte adhesion defiency: molecular basis and functional consequences. Immunodeficiency Rev 1: 39–54

    CAS  Google Scholar 

  • Fitzgerald LA, Poncz M, Steiner B, Rall SC, Bennett JS, Phillips DR (1987a) Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor α-subunits and platelet glycoprotein lib. Biochemistry 26: 8158–8165

    PubMed  CAS  Google Scholar 

  • Fitzgerald LA, Steiner B, Rall SC, Lo S-S, Phillips DR (1987b) Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone: identity with platelet glycoprotein IIIa and similarity to “integrin”. J Biol Chem 262: 3936–3939

    PubMed  CAS  Google Scholar 

  • Gardiner K, Watkins P, Munke M, Drabkin H, Jones C, Patterson D (1988) Partial physical map of human chromosome 21. Somatic Cell Mol Genet 14: 623–638

    CAS  Google Scholar 

  • Griffin FM, Bianco C, Silverstein SC (1975) Characterization of the macrophage receptor for complement and demonstration of its functional independence from the receptor for the Fc portion of immunoglobulin G. J Exp Med 141: 1269–1277

    PubMed  Google Scholar 

  • Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65: 513–525

    PubMed  CAS  Google Scholar 

  • Harlan JM, Killen PD, Senecal FM, Schwartz BR, Yee EK, Taylor RF, Beatty PG, Price TH, Ochs HD (1985) The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro. Blood 66: 167–178

    PubMed  CAS  Google Scholar 

  • Hemler ME (1988) Adhesive protein receptors on hematopoietic cells. Immunol Today 9:109–113

    PubMed  CAS  Google Scholar 

  • Hemler ME, Huang C, Takada Y, Schwarz L, Strominger JL, Clabby ML (1987) Characterization of five distinct cell surface heterodimers each with a common 130000 molecular weight β subunit. J Biol Chem 262: 3300–3309

    PubMed  CAS  Google Scholar 

  • Hemler ME, Crouse C, Takada Y, Sonnenberg A (1988) Multiple very late antigen (VLA) heterodimers on platelets: evidence for distinct VLA-2, VLA-5 (fibronectin receptor), and VLA-6 structures. J Biol Chem 263: 7660–7665

    PubMed  CAS  Google Scholar 

  • Hickstein DD, Hickey MJ, Ozols J, Baker DM, Back AL, Roth GJ (1989) cDNA sequence for the aM subunit of the human neutrophil adherence receptor indicates homology to integrin α subunits. Proc Natl Acad Sci USA 86: 257–261

    PubMed  CAS  Google Scholar 

  • Hogg N, Horton MA (1987) Myeloid antigens: new and previously defined clusters. In: McMichael AT (ed) Leucocyte typing III: white cell differentiation antigens. Oxford University Press, Oxford, pp 576–602

    Google Scholar 

  • Holzman B, Mclntyre BW, Weissman IL (1989) Identification of a murine Peyer’s patch-specific lymphocyte homing receptor as an integrin molecule with an a chain homologous to human VLA-4α. Cell 56: 37–46

    Google Scholar 

  • Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554

    PubMed  CAS  Google Scholar 

  • Ismail G, Morgenroth ML, Todd RF, Boxer LA (1987) Prevention of pulmonary injury in isolated perfused rat lungs by activated human neutrophils preincubated with anti-Mo-1 monoclonal antibody. Blood 69: 1167–1174

    PubMed  CAS  Google Scholar 

  • Keizer GD, Te Velde AA, Schwarting R, Figdor CG, de Vries JE (1987) Role of pl50,95 in adhesion, migration, chemotaxis and phagocytosis of human monocytes. Eur J Immunol 17: 1317–1322

    PubMed  CAS  Google Scholar 

  • Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA (1987a) Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1, and pl 50,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50: 193–202

    PubMed  CAS  Google Scholar 

  • Kishimoto TK, O’Connor K, Lee A, Roberts TM, Springer TA (1987b) Cloning of the β subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel supergene family. Cell 48: 681–690

    PubMed  CAS  Google Scholar 

  • Klempner MS, Cendron M, Wyler DJ (1983) Attachment of plasma membrane vesicles of human macrophages to Leishmania tropic. promastigotes. J Infect Dis 148: 377–384

    PubMed  CAS  Google Scholar 

  • Krensky AM, Mentzer SJ, Clayberger C, Anderson DC, Schmalstieg FC, Burakoff SJ, Springer TA (1985) Heritable lymphocyte function-associated antigen-1 defiency: abnormalities of cytotoxicity and proliferation associated with abnormal expression of LFA-1. J Immunol 135: 3102–3108

    PubMed  CAS  Google Scholar 

  • Larson RS, Corbi AL, Berman L, Springer T (1989) Primary structure of the leukocyte function-associated molecule-1 α subunit: an integrin with an embedded domain deifining a protein superfamily. J Cell Biol 108: 703–712

    PubMed  CAS  Google Scholar 

  • Law SKA (1988) C3 receptors on macrophages. In: Gordon S (ed) Macrophage plasma membrane receptors: structure and function. J Cell Sci (Suppl 9): 67–97

    Google Scholar 

  • Law SKA (1989) Complement receptor type III (CR3) and related proteins. In: Sim RB (ed) Biochemistry and molecular biology of complement. MTP Press, Lancester (in press)

    Google Scholar 

  • Law SKA, Gagnon J, Hildreth JEK, Wells CE, Willis AC, Wong AJ (1987) The primary structure of the β-subunit of the cell surface adhesion glycoproteins LFA-1, CR3 and pl 50,95 and its relationship to the fibronectin receptor. EMBO J 6: 915–919

    PubMed  CAS  Google Scholar 

  • Lay WH, Nussenzweig V (1968) Receptors for complement on leukocytes. J Exp Med 128: 991–1010

    PubMed  CAS  Google Scholar 

  • Lisowska-Grospierre B, Bohler MC, Fischer A, Mawas C, Springer TA, Giscelli C (1986) Defective membrane expression of the LFA-1 complex may be secondary to the absence of the β chain in a child with recurrent bacterial infection. Eur J Immunol 16: 205–208

    PubMed  CAS  Google Scholar 

  • Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1: 27–33

    PubMed  CAS  Google Scholar 

  • Malhotra V, Hogg N, Sim RB (1986) Ligand binding by the pl50,95 antigen of U937 monocytic cells: properties in common with complement receptor type 3 (CR3). Eur J Immunol 16: 1117–1123

    PubMed  CAS  Google Scholar 

  • Marlin SD, Morton CC, Anderson DC, Springer TA (1986) LFA-1 immunodefixiency disease: definition of the gentic defect and chromosomal mapping of the a and β subunits of the lymphocyte function associated antigen 1 (LFA-1) by complementation in hybrid cells. J Exp Med 164: 855–867

    PubMed  CAS  Google Scholar 

  • Micklem KJ, Sim RB (1985) Isolation of complement-fragment-iC3b-binding proteins by affinity chromatography: the identification of pl50,95 as an iC3b-binding protein. Biochem J 231: 233–236

    PubMed  CAS  Google Scholar 

  • Miller LJ, Bainton DF, Borregaard N, Springer TA (1987) Stimulated mobilization of monocyte Mac-1 and pl 50,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J Clin Invest 80: 535–554

    PubMed  CAS  Google Scholar 

  • Mole JE, Anderson JK, Davison EA, Woods DE (1984) Complete primary structure for the zymogen of human complement factor B. J Biol Chem 259: 3407–3412

    PubMed  CAS  Google Scholar 

  • Mosser DM, Edelson PJ (1985) The mouse macrophage receptor for iC3b is a major mechanism in the phagocytosis of Leishmani. promastigotes. J Immunol 135: 2785–2788

    PubMed  CAS  Google Scholar 

  • Mosser DM, Vlassara H, Edelson PJ, Cerami A (1987) Leishmani. promastigotes are recognized by the macrophage receptor for advanced glycosylation end products. J Exp Med 165: 140–145

    PubMed  CAS  Google Scholar 

  • Myones BL, Daizell JG, Hogg N, Ross GD (1988) Neutrophil and monocyte cell surface pl50,95 has iC3b-receptor (CR4) activity resembling CR3. J Clin Invest 82: 640–651

    PubMed  CAS  Google Scholar 

  • Nermut MX, Green NM, Eason P, Yamada KM (1988) Electron microscopy and structural model of human fibronectin receptor. EMBO J 7: 4095–4099

    Google Scholar 

  • O’Shea JJ, Brown EJ, Seligmann BE, Metcalf JA, Frank MM, Gallin JI (1985) Evidence for distinct intracellular pools of receptors for C3b and C3bi in human neutrophils. J Immunol 134: 2580–2587

    PubMed  Google Scholar 

  • Painter RG, Sklar LA, Jesaitis AJ, Schmitt M, Cochrane CG (1984) Activation of neutrophils by N-formyl chemotactic peptides. Fed Proc 43: 2737–2743

    PubMed  CAS  Google Scholar 

  • Peters MS, Kamarck ME, Hemler ME, Strominger JL, Ruddle FH (1984) Genetic and biological characterization of human lymphocyte cell surface antigens: the A-1A5 and A-3A4 determinants. J Exp Med 159: 1441–1445

    PubMed  CAS  Google Scholar 

  • Petrequin PR, Todd RF, Devaili LJ, Boxer LA, Curnutte JT (1987) Association between gelatinase release and increased plasma membrane expression of the Mol glycoprotein. Blood 69: 605–610

    PubMed  CAS  Google Scholar 

  • Piershbacher MD, Ruoslahti E (1984) The cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 30–33

    Google Scholar 

  • Pohlman TH, Stanness KA, Beatty PG, Ochs HD, Harlan JM (1986) An endothelial cell surface factor(s) induced in vitro by lipopolysacchardie, interleukin 1, and tumor necrosis factor-α increases neutrophil adherence by a CDwl8-dependent mechanism. J Immunol 136: 4548–4553

    PubMed  CAS  Google Scholar 

  • Poncz M, Eisman R, Heidenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennet JS (1987) Structure of the platelet membrane glycoprotein IIb: homology to the a subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem 262: 8476–8482

    PubMed  CAS  Google Scholar 

  • Price TH, Beatty PG, Corpuz SR (1987) In vivo inhibition of neutrophil function in the rabbit using monoclonal antibody to CD 18. J Immunol 139: 4174–4177

    PubMed  CAS  Google Scholar 

  • Pytela R (19.88) Amino acid sequence of the murine Mac-1 α chain reveals homology with the integrin family and an additional domain related to von Willebrand factor. EMBO J 7: 1371–1378

    Google Scholar 

  • Rosen H, Gordon S (1987) Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med 166: 1685–1701

    PubMed  CAS  Google Scholar 

  • Rosen H, Milon G, Gordon S (1989a) Antibody to the murine type 3 complement receptor inhibits T lymphocyte-dependent recruitment of myelomonocytic cells in vivo. J Exp Med 169: 535–549

    PubMed  CAS  Google Scholar 

  • Rosen H, Gordon S, North RJ (1989b) Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. J Exp Med 170: 27–39

    PubMed  CAS  Google Scholar 

  • Ross GD, Lambris JD (1982) Identification of the C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils and erythrocytes. J Exp Med 155: 96–110

    PubMed  CAS  Google Scholar 

  • Ross GD, Cain JA, Lachmann PJ (1985a) Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin and functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol 134: 3307–3315

    PubMed  CAS  Google Scholar 

  • Ross GD, Thompson RA, Walport MJ, Springer TA, Watson JV, Ward RHR, Lida J, Newman SL, Harrison RA, Lachmann PJ (1985b) Characterization of patients with an increased susceptibility to bacterial infections and a genetic deficiency of leukocyte membrane complement receptor type 3 and the related membrane antigen LFA-1. Blood 66: 882–890

    PubMed  CAS  Google Scholar 

  • Ross GD, Cain JA, Myones BL, Newman SL, Lachmann PJ (1987) Specificity of membrane complement receptor type three (CR3) for β-glucans. Complement 4: 61–74

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57: 375–413

    PubMed  CAS  Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238: 491–497

    PubMed  CAS  Google Scholar 

  • Russell DG, Wright SD (1988) Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmani. promastigotes. J Exp Med 168: 279–292

    PubMed  CAS  Google Scholar 

  • Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA (1983) A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/-Mac-1), and the pl50,95 molecule. J Exp Med 158: 1785–1803

    PubMed  CAS  Google Scholar 

  • Santoro SA, Lawing WL (1987) Competition for related but nonidentical binding sites on the glycoprotein IIb-IIIa complex by peptides derived from platelet adhesive proteins. Cell 48: 867–873

    PubMed  CAS  Google Scholar 

  • Shelton-Inloes BB, Titani K, Sadler JE (1986) cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible sequence polymorphisms. Biochemistry 25: 3164–3171

    PubMed  CAS  Google Scholar 

  • Silverstein SC, Steinman RM, Cohn ZA (1977) Endocytosis. Annu Rev Biochem 46: 699–722

    Google Scholar 

  • Simpson PJ, Todd RF, Fantone JC, Mickelson JK, Griffin FM, Lucchesi BR (1988) Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody that inhibits leukocyte adhesion. J Clin Invest 81: 624–629

    PubMed  CAS  Google Scholar 

  • Smith JW and Cheresh DA (1988) The Arg-Gly-Asp binding domain of the vitronectin receptor: photoaffinity cross-linking implicates amino acid residues 61-203 of the β subunit. J Biol Chem 263: 18726–18731

    PubMed  CAS  Google Scholar 

  • Solomon E, Palmer R, Hing S, Law SKA (1988) Regional localization of CD18, the β-subunit of the cell surface adhesion molecule LFA-1, on human chromosome 21 by in situ hybridization. Ann Human Genet 52: 123–128

    CAS  Google Scholar 

  • Sonnenberg A, Modderman PW, Hogervorst F (1988) Laminin receptor on platelets is the integrin VLA-6. Nature 336: 487–489

    PubMed  CAS  Google Scholar 

  • Sosnoski DM, Emanuel BS, Hawkins AL, van Tuinen P, Ledbetter DH, Nussbaum RL, Kaos FT, Schwartz E, Phillips D, Bennett JS, Fitzgerald LA, Poncz M (1988) Chromosomal localization of the genes for the vitronectin and fibronectin receptors α subunits and for platelet glycoproteins IIb and IIIa. J Clin Invest 81: 1993–1998

    PubMed  CAS  Google Scholar 

  • Springer TA, Anderson DC (1986) Leukocyte complement receptors and adhesion proteins in the inflammatory response: insights from an experiment of nature. Biochem Soc Symp 51: 47–57

    PubMed  CAS  Google Scholar 

  • Springer T, Galfre G, Secher DS, Milstein C (1979) Mac-1: a macrophage differentiation antigen identified by a monoclonal antibody. Eur J Immunol 9: 301–309

    PubMed  CAS  Google Scholar 

  • Springer TA, Thompson WS, Miller LJ, Schmalstieg FC, Anderson DC (1984) Inherited deficiency of the Mac-1, LFA-1 p150,95 glycoprotein family and its molecular basis. J Exp Med 160: 1901–1918

    PubMed  CAS  Google Scholar 

  • Suzuki S, Argraves WS, Arai H, Languino LR, Pierschbacher MD, Ruoslahti E (1987) Amino acid sequence of the vitronectin receptor a subunit and comparative expression of adhesion receptor mRNAs. J Biol Chem 262: 14080–14085

    PubMed  CAS  Google Scholar 

  • Szebenyi DME, Obendorf SK, Moffat K (1981) Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature 294: 327–332

    PubMed  CAS  Google Scholar 

  • Takada Y, Huang C, Hemler ME (1987a) Fibronectin receptor structures in the VLA family of heterodimers. Nature 326: 607–609

    PubMed  CAS  Google Scholar 

  • Takada Y, Strominger JL, Hemler ME (1987b) The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis. Proc Natl Acad Sci USA 84: 3229–3243

    Google Scholar 

  • Takada Y, Wayner EA, Carter WG, Hemler ME (1988) Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J Cell Biochem 37: 385–393

    PubMed  CAS  Google Scholar 

  • Todd RF, Freyer DR (1988) The CD11/CD18 leukocyte glycoprotein deficiency. In: Curnutte JT (ed) Phagocytic defects. Saunders, New York, pp 13–31

    Google Scholar 

  • Todd RF, Arnaout MA, Rosin RE, Crowley CA, Peters WA, Babior BM (1984) Subcellular localization of the large subunit of Mol (Molα; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion. J Clin Invest 74: 1280–1290

    PubMed  CAS  Google Scholar 

  • Todd RF, Simpson PJ, Lucchesi BR (1989) The anti-inflammatory properties of monoclonal anti-Mo 1 antibodies in vitro and in vivo. In: Rosenthal AS, Springer TA, Anderson DC, Rothlein R (eds) Structure and function of molecules involved in leukocyte adhesion. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Tonnesen MG, Anderson DC, Springer TA, Knedler A, Avdi N, Henson PM (1989) Adherence of neutrophils to cultured human micro vascular endothelial cells: stimulation by chemo-tactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 83: 637–646

    PubMed  CAS  Google Scholar 

  • Vedder NB, Harlan JM (1988) Increased surface expression of CDllb/CD18 (Mac-1) is not required for stimulated neutrophil adherence to cultured endothelium. J Clin Invest 81: 676–682

    PubMed  CAS  Google Scholar 

  • Vedder NM, Winn RK, Rice CL, Chi EY, Arfors K-E, Harlan JM (1988) A monoclonal antibody to the adherence-promoting leukocyte glycoprotein CD 18 reduces organ injury and improves survival from hemorrahgic shock in rabbits. J Clin Invest 81: 939–944

    PubMed  CAS  Google Scholar 

  • Wayner EA, Carter WG, Piotrowicz RS, Kunicki TJ (1988) The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa. J Cell Biol 107: 1881–1891

    PubMed  CAS  Google Scholar 

  • Wells CE, Law SKA (1987) RFLP of the β-subunit of the cell surface adhesion glycoproteins (Abstract). Complement 4: 238

    Google Scholar 

  • Wright SD, Jong MTC (1986) Adhesion-promoting receptors on human macrophages recognize Escherichia col. by binding to lipopolysaccharide. J Exp Med 164: 1876–1888

    PubMed  CAS  Google Scholar 

  • Wright SD, Meyer BC (1986) Phorbol esters cause sequential activation and deactivation of complement receptors on polymorphonuclear leukocytes. J Immunol 136: 1759 to 1764

    PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1982) Tumor-promoting phorbol esters stimulate C3b and C3b’ receptor-mediated phagocytosis in cultured human monocytes. J Exp Med 156: 1149–1164

    PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158: 2016–2023

    PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1984) Phagocytosing macrophages exclude proteins from the zone of contact with opsonized targets. Nature 309: 359–361

    PubMed  CAS  Google Scholar 

  • Wright SD, Craigmyle LS, Silverstein SC (1983a) Fibronectin and serum amyloid P component stimulate C3b-and C3bi-mediated phagocytosis in cultured human monocytes. J Exp Med 158: 1338–1343

    PubMed  CAS  Google Scholar 

  • Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, Iida K, Talle MA, Westberg EF, Goldstein G, Silverstein SC (1983b) Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci USA 80: 5699–5703

    PubMed  CAS  Google Scholar 

  • Wright SD, Licht MR, Craigmyle LS, Silverstein SC (1984) Communication between receptors for different ligands on a single cell: ligation of fibronectin receptors induces a reversible alteration in the function of complement receptors on cultured human monocytes. J Cell Biol 99: 336–339

    PubMed  CAS  Google Scholar 

  • Wright SD, Detmers PA, Jong MTC, Eyer BC (1986) Interferon-gamma depresses the binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin. J Exp Med 163: 1245–1259

    PubMed  CAS  Google Scholar 

  • Wright SD, Reddy PA, Jong MTC, Erickson BW (1987) C3bi receptor (complement receptor type 3) recognizes a region of complement protein C3 containing the sequence Arg-Gly-Asp. Proc Natl Acad Sci USA 84: 1965–1968

    PubMed  CAS  Google Scholar 

  • Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, Loike JD (1988) Complement receptor type three (CDl1b/CD 18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci USA 85: 7734–7738

    PubMed  CAS  Google Scholar 

  • Wright SD, Levin SM, Jong MTC, Chad Z, Kabbash LG (1989) CR3 (CDl1b/CD 18) expresses on binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med 169: 175–183

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Johnston RB (1984) Dissociation of phagocytosis from stimulation of the oxiative metabolic burst in macrophages. J Exp Med 159: 405–416

    PubMed  CAS  Google Scholar 

  • Zimmerman G A, Mclntyre TM (1988) Neutrophil adherence to human endothelium in vitro occurs by CDwl8 (Mol, Mac-1/LFA-l/gp 150,95) glycoprotein-dependent and-independent mechanisms. J Clin Invest 81: 531–537

    PubMed  CAS  Google Scholar 

  • Zimrin AB, Eisman R, Vilaire G, Schwartz E, Bennett JS, Poncz M (1988) Structure of platelet glycoprotein IIIa: a common subunit for two different membrane receptors. J Clin Invest 81: 1470–1475

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosen, H., Alex Law, S.K. (1990). The Leukocyte Cell Surface Receptor(s) for the iC3b Product of Complement. In: Lambris, J.D. (eds) The Third Component of Complement. Current Topics in Microbiology and Immunology, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74977-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74977-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74979-7

  • Online ISBN: 978-3-642-74977-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics