Advertisement

Signal Processing Fundamentals

  • Pankaj K. Das

Abstract

In this chapter, we shall review material relevant to the understanding, design and application of optical and other devices discussed in this book. Signals can be analog, discrete or digital. For the analog case, the time or space variable is continuous. For the discrete case, the time axis is sampled at a fixed interval or for discrete values, even though the amplitude remains analog or continuous. Of course, for a digital system, the time is discrete and the amplitude is represented by a digital number. The spatial signal can also be two- or multidimensional.

Keywords

Impulse Response Surface Acoustic Wave Finite Impulse Response Adaptive Filter Matched Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    S. Darlington: US patent No. 2,678,997, May 18 (1954)Google Scholar
  2. 3.2
    FJ. Harris: Proc. IFFY. 66, 51 (1978)CrossRefADSGoogle Scholar
  3. 3.3
    F. Italcura, S. Saito: In 7th Intl. Cong. Acoustics (Budapest) (1971) pp. 261–264Google Scholar
  4. 3.4
    C.H. Sequin, M.F. Tompsett: Charge Transfer Devices ( Academic, New York 1975 )Google Scholar
  5. 3.5
    D.A. Smith, C.M. Puckett, W. J. Butler: Active bandpass filtering with bucket brigade delay lines, IEEE J. SC-7, 421 (1972)Google Scholar
  6. 3.6
    R.H. Tancre11: IEEE Trans. SU-21, 12 (1974)Google Scholar
  7. 3.7
    M.H. White, I.A. Mack, G.M. Borsuk, D.R. Lampe, FJ. Kub: Charge coupled device (CCD) adaptive discrete analog signal processing. JEFF J SC-14, 132 (1979)Google Scholar
  8. 3.8
    E.L. O’Neil: Introduction to Statistical Optics ( Addison-Wesley, Reading, MA 1963 )Google Scholar
  9. 3.9
    R.M.A. Azzam, N.M. Bashara: Ellipsometry and Polarized Light ( North-Holland, Amsterdam 1977 )Google Scholar
  10. 3.10
    A.W. Rihaczek: Principles of High Resolution Radar, ( McGraw-Hill, New York 1969 )Google Scholar
  11. 3.11
    J.R. Klauder: The design of radar signals having both high range resolution and high velocity resolution. Bell Syst. Tech. J. 39, 809 (1960)Google Scholar
  12. 3.12
    H.O. Bartlet, K.H. Brenner, A.W. Lohmann: The Wigner distribution function and its optical production. Opt. Commun. 2, 32 (1981)Google Scholar
  13. R.S. Berkowitz: Modern Radar ( Wiley, New York 1965 )Google Scholar
  14. K.H. Brenner, A.W. Lohmann: Wigner distribution function display of complex ID signals. Opt. Commun. 42, 310 (1982)CrossRefADSGoogle Scholar
  15. T.A.C.M. Claasen, W.F.G. Mecklenbrauker: The Wigner distribution A tool for time-frequency signal analysis, Part I: Continuous-time signals. Philips J. Res. 35, 217 (1980)MATHMathSciNetGoogle Scholar
  16. T.A.C.M. Claasen, W.F.G. Mecklenbrauker: The Wigner distribution A tool for time-frequency signal analysis, Part II: Discrete-time signals. Philips J. Res. 35, 276 (1980)MATHMathSciNetGoogle Scholar
  17. T.A.C.M. Claasen, W.F.G. Mecklenbrauker: The Wigner distribution A tool for time-frequency signal analysis, Part III: Relations with other time-frequency signal transformations. Philips J. Res. 35, 372 (1980)MATHMathSciNetGoogle Scholar
  18. W.L. Eversole, DJ. Meyer, RJ. Kansy: “A CCD Two-Dimensional Transform” in Proc. 1978 Int. Conf. on the Application of Charge Coupled Devices, p. 3B-31Google Scholar
  19. B. Friedlander: Lattice filters for adaptive processing. Proc. IEEE 70, 829 (1982)CrossRefGoogle Scholar
  20. J.D. Gaskill: Linear Systems, Fourier Transforms and Optics ( Wiley, New York 1978 )Google Scholar
  21. A. Gelb (ed.): Applied Optimal Estimation ( MIT, Cambridge, MA 1974 )Google Scholar
  22. J. Goodman: Introduction to Fourier Optics ( McGraw-Hill, New York 1968 )Google Scholar
  23. L.J. Griffiths: “Adaptive Structures for Multiple-Input Noise Cancelling Applications”, in Proc JE.FF. Int. Conf. on Acoustics, Speech, and Signal Processing (1979) p. 925Google Scholar
  24. A.W. Lohman, B. Wirnitzer: Triple correlations, Proc. IEEE. 72, 889 (1984)CrossRefGoogle Scholar
  25. J. Mahoul: A class of all-zero lattice digital fiters: Properties and applications. IEEE Trans. ASSP-26, 304 (1978).Google Scholar
  26. A. Oppenheim, R.W. Schafer: Digital Signal Processing ( Prentice Hall, Englewood Cliffs, NJ 1975 )MATHGoogle Scholar
  27. A. Papoulis: Systems and Transforms with Applications in Optics ( McGraw-Hill, New York 1968 )Google Scholar
  28. A. Papoulis: Signal Analysis ( McGraw-Hill, New York 1977 )MATHGoogle Scholar
  29. W.K. Pratt: Digital Image Processing ( Wiley, New York 1978 )Google Scholar
  30. E.A. Robinson: A historical perspective of spectrum estimation. Proc. IFFF 70, 885 (1982)CrossRefADSGoogle Scholar
  31. B. Saleh: Photoelectron Statistics, Springer Ser. Opt. Sci., Vol. 6 (Springer, Berlin, Heidelberg 1978) Special Issue, Spectral Estimation. Proc. IEEE, Vol. 70 (Sept. 1982)Google Scholar
  32. H.H. Szu, HJ. Caulfield: The mutual time-frequency content of two signals. Pmc. IEEE 72, 902 (1984)CrossRefGoogle Scholar
  33. B. Widrow, M. Hoff, Jr.: “Adaptive Switching Circuits”, in IRE WESCON Conv. Rec. (1960) Pt.4, pp. 96–104Google Scholar
  34. B. Widrow, S.D. Stearns: Adaptive Signal Processing ( Prentice Hall, Englewood Cliffs, NJ 1985 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Pankaj K. Das
    • 1
  1. 1.Electrical, Computer, and Systems Engineering Department, School of EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations