Advertisement

Nephrologie pp 12-26 | Cite as

Aminosäurestoffwechsel bei Urämie

  • P. Fürst
Part of the Innovative Aspekte der Klinischen Medizin book series (KLIN MED, volume 1)

Zusammenfassung

Es weist vieles darauf hin, daß ein gestörter Eiweiß- und Aminosäurestoffwechsel bei chronischem Nierenversagen eine zentrale Rolle spielt [10, 11]. Urämiepatienten zeigen bekanntlich eine Neigung zu negativer Stickstoffbilanz und zum Verlust von Muskelmasse. Zudem verlieren Patienten unter Erhaltungsdialyse durch das Dialyseverfahren Aminosäuren, womit die Eiweißverarmung verstärkt wird. Der Eiweiß- und Aminosäurebedarf scheint bei Urämie höher zu sein als bei gesunden Probanden [24, 39, 52, 89]. Der wesentliche Zweck vorliegender Zusammenstellung besteht in der Beschreibung bestimmter Veränderungen des Aminosäurestoffwechsels im extra- und intrazellulären Raum, in der Interpretation der für diese Veränderungen verantwortlichen Faktoren und der Beurteilung der therapeutischen Implikationen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alvestrand A (1983) Amino acid and glucose metabolism in patients with chronic renal failure. Thesis, Karolinska Institute, StockholmGoogle Scholar
  2. 2.
    Alvestrand A, Bergström J, Fürst P (1979) Intracellular free amino acids in patients treated with regular haemodialysis ( HD ). Proc Eur Dial Transplant Assoc 16: 129–134PubMedGoogle Scholar
  3. 3.
    Alvestrand A, Ahlberg M, Bergström J, Fürst P (1981) The effect of nutritional regimens on branched chain amino acid (BCAA) antagonism in uremia. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Elsevier, North Holland, pp 605–613Google Scholar
  4. 4.
    Alvestrand A, Fürst P, Bergström J (1982) Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol 18: 297–305PubMedGoogle Scholar
  5. 5.
    Alvestrand A, Fürst P, Bergström J (1983a) Intracellular amino acids in uremia. Kidney Int 24 [Suppl] 16: 9–16Google Scholar
  6. 6.
    Alvestrand A, Ahlberg M, Fürst P, Bergström J (1983b) Clinical results of long-term treatment with a low protein diet and new amino acid preparation in patients with chronic uremia. Clin Nephrol 19: 67–73PubMedGoogle Scholar
  7. 7.
    Alvestrand A, De Fronzo RA, Smith D, Wahren J (1987) Influence of hyperinsulinemia on intracellular amino acid levels and amino acid exchange across splanchnic and leg tissues in uremia. Clin SciGoogle Scholar
  8. 8.
    Austin SA, Clemens MJ (1981) The regulation of protein synthesis in mammalian cells by amino acid supply. Biosci Rep 1: 35–42PubMedCrossRefGoogle Scholar
  9. 9.
    Bergström J, Alvestrand A (1984) Therapy with branched-chain amino acids and ketoacids in chronic uremia. In: Adibi SA, Fekl W, Langenbeck U (eds) Branched-chain amino acids and ketoacids in health and disease. S.A. Karger, Basel, pp 391–422Google Scholar
  10. 10.
    Bergström J, Fürst P (1983) Uremic toxins. In: Drukker W, Parsons FM, Maher JF (eds) Replacement of renal function by dialysis, 2nd edn. Nijhoff, Boston The Hague Dordrecht Lancaster, pp 354–390CrossRefGoogle Scholar
  11. 11.
    Bergström J, Fürst P (1983) Other uremic toxins. In: Massry SG, Glassock RJ (eds) Textbook of nephrology, vol 2. Williams *amp; Wilkins, Baltimore London, pp 7.8–7.11Google Scholar
  12. 12.
    Bergström J, Fürst P, Josephson B, Noree LO (1970) Improvement of nitrogen balance in a uremic patient by the addition of histidine to essential amino acid solutions given intravenously. Life Sci 9: 794–797CrossRefGoogle Scholar
  13. 13.
    Bergström J, Fürst P, Noree LO, Vinnars E (1972) The effect of peritoneal dialysis on the intracellular free amino acids in muscle from uremic patients. Proc Eur Dial Transplant Assoc 9: 393PubMedGoogle Scholar
  14. 14.
    Bergström J, Fürst P, Josephson B, Noree LO (1972) Factors affecting the nitrogen balance in chronic uremic patients receiving essential amino acids intravenously or by mouth. Nutr Metab 14: 162–170PubMedCrossRefGoogle Scholar
  15. 15.
    Bergström J, Bucht H, Fürst P, Hultman E, Josephson B, Noree LO, Vinnars E (1972) Intravenous nutrition with amino acid solutions in patients with chronic uremia. Acta Med Scand 191: 359–367PubMedGoogle Scholar
  16. 16.
    Bergström J, Fürst P, Noree LO (1975) Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. I. Nitrogen balance studies. Clin Nephrol 3: 187–194PubMedGoogle Scholar
  17. 17.
    Bergström J, Fürst P, Noree LO, Vinnars E (1978) Intracellular free amino acids in muscle tissue of patients with chronic uremia: effect of peritoneal dialysis and infusion of essential amino acids. Clin Sci [Suppl] 54: 51–60Google Scholar
  18. 18.
    Bergström J, Ahlberg M, Alvestrand A, Fürst P (1978) Metabolic studies with keto acids in uremia. Am J Clin Nutr 31: 1761–1766PubMedGoogle Scholar
  19. 19.
    Bergström J, Alvestrand A, Fürst P (1985) Evaluation of amino acid requirements in uremia by determination of intracellular free amino acid concentrations in muscle. In: Boucot-Cummings N, Klahr S (eds) Chronic Renal Disease. Plenum Publishing, New York, pp 568–571Google Scholar
  20. 20.
    Bergström J, Qureshi GA, Rashed Qureshi A (1987) Inhibition of cysteine sulphonic acid decarboxylase in chronic renal failure. Abstract Nephrology, Dialysis and TransplantationGoogle Scholar
  21. 21.
    Bergström J, Ahlberg M, Alvestrand A, Fürst P (1987) Amino acid therapy for patients with chronic renal failure. Infusionsther Klin Ernähr 14 5: 9–11Google Scholar
  22. 22.
    Bergström J, Alvestrand A, Fürst P, Lindholm N (in press) Sulpjur amino acids in plasma and muscle in patients with chronic failure; evidence for taurine depletion. Clin SciGoogle Scholar
  23. 23.
    Biasioli S, D’Andrea GM, Feriani M, Charmonte S, Fabris A, Ronco C, La Greca G (1986) Uremic encephalopathy; an updating. Clin Nephrol 25: 57–63PubMedGoogle Scholar
  24. 24.
    Borah MF, Schönfeld PY, Gotch FA, Sargent IA, Wolfson M, Humphreys MH (1978) Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491–500PubMedCrossRefGoogle Scholar
  25. 25.
    Brown CL, Houghton BJ, Souhami RL, Richards P (1972) The effects of low-protein diet and uremia upon urea cycle enzymes and transaminases in rats. Clin Sci 43: 371–376PubMedGoogle Scholar
  26. 26.
    Budd MA, Tanaka K, Holmes LB, Efron ML, Crawford JD, Isselbacher KJ (1967) Isovaleric acidemia: clinical features of a new genetic defect of leucine metabolism. N Engl J Med 277: 321–327PubMedCrossRefGoogle Scholar
  27. 27.
    Cernacek P, Becvarova H, Gerova Z, Valek A, Spustova V (1980) Plasma tryptophan level in chronic renal failure. Clin Nephrol 14: 246–249PubMedGoogle Scholar
  28. 28.
    Chami J, Reidenberg MM, Wellner D, David DS, Rubin AL, Stenzel KH (1978) Pharmacokinetics of essential amino acids in chronic dialysis patients. Am J Clin Nutr 31: 1652–1659PubMedGoogle Scholar
  29. 29.
    Chan W, Wang M, Kopple JD, Swendseid MD (1974) Citrulline levels and urea cycle enzymes in uremic rats. J Nutr 104: 678–683PubMedGoogle Scholar
  30. 30.
    Connelly JL, Danner DJ, Bowden JA (1968) Branched chain alpha-ketoacid metabolism I. Isolation, purification and partial characterization of bovine liver alpha-keto-isocaproic: alpha-keto-beta-methylvaleric acid dehydrogenase. J Biol Chem 243: 1198–1203PubMedGoogle Scholar
  31. 31.
    Druml W, Burger U, Kleinberger G, Lenz K, Laggner A (1986) Elimination of amino acids in renal failure. Nephron 42: 62–67PubMedCrossRefGoogle Scholar
  32. 32.
    Dunglison R (1845, 1853, 1854, 1857, 1868 ) Medical Lexicon — A Dictionary of Medical Science. Blanchard & Lea, PhiladelphiaGoogle Scholar
  33. 33.
    Epstein CM, Chawla RK, Wadsworth A, Rudman D (1980) Decarboxylation of alphaketoisovaleric acid after oral administration in man. Am J Clin Nutr 53: 1968–1974Google Scholar
  34. 34.
    Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178: 414–417PubMedCrossRefGoogle Scholar
  35. 35.
    De Fronzo RA, Nadres R, Edgar P, Walker WG (1973) Carbohydrate metabolism in uremia. A review. Medicine 52: 469–481CrossRefGoogle Scholar
  36. 36.
    De Fronzo RA, Smith D, Alvestrand A (1983) Insulin action in uremia. Kidney Int 24 16: 102–114Google Scholar
  37. 37.
    Fürst P (1972) 15N-studies in severe renal failure. II. Evidence for the essentiality of histidine. Scand J Clin Lab Invest [Suppl] 30:307–312PubMedCrossRefGoogle Scholar
  38. 38.
    Fürst P (1985) Regulation of intracellular metabolism of amino acids. Sir Arvid Wretlind Lecture. In: Bozzetti F, Dionigi R (eds) Nutrition in cancer and trauma sepsis. Karger, Basel, pp 21–53Google Scholar
  39. 39.
    Fürst P, Alvestrand A, Bergström J (1980) Effects of nutrition and catabolic stress on intracellular amino acid pools in uremia. Am J Clin Nutr 33: 1387PubMedGoogle Scholar
  40. 40.
    Giordano C, De Pascale L, Philips M, De Santo N, Fürst P, Richards P (1972) Utilization of ketoacid analogues of valine and phenylalanine in health and uremia. Lancet I: 178–182CrossRefGoogle Scholar
  41. 41.
    Giordano C, De Santo NG, Rinaldi S, De Pascale C, Pluvio M (1972) Histidine and glycine essential amino acids in uremia. In: Kluthe R, Berlyne G, Burton B (eds) Uremia: An international conference on pathogenesis, diagnosis, and therapy. Thieme, Stuttgart, pp 138–143Google Scholar
  42. 42.
    Gulyassy PF, de Torrente A (1975) Tryptophan metabolism in uremia. Kidney Int 7: 311–315Google Scholar
  43. 43.
    Gulyassy PF, Aviram A, Peters JH (1970) Evaluation of amino acid and protein requirements in chronic uremia. Arch Intern Med 7: 855–859CrossRefGoogle Scholar
  44. 44.
    Gulyassy PF, Peters JH, Schoenfeld P (1972) Transport and protein binding of tryptophan in uremia. In: Kluthe R, Berlyne G, Burton B (eds) Uremia: An international conference on pathogenesis, diagnosis and therapy. Thieme, Stuttgart, pp 163–170Google Scholar
  45. 45.
    Halliday D, Madigan M, Chalmers RA, Purhiss P, Ell S, Bergström J, Fürst P, Neuhäuser M, Richards P (1981) The degree of conversion of alpha-ketoacids to valine and phenylalanine in health and uremia. Q J Med 50: 53–62PubMedGoogle Scholar
  46. 46.
    Harker LA, Ross R, Slichter SJ, Scott CR (1976) Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 58: 731–741PubMedCrossRefGoogle Scholar
  47. 47.
    Harper AE (1964) Amino acid toxicities and imbalances. In: Munro HN, Allison JB (eds) Mammalian Protein Metabolism, vol II. Academic Press, New York, pp 87–134Google Scholar
  48. 48.
    Hayes KC, Sturman JA (1981) Taurine in metabolism. Annu Rev Nutr I: 401–425CrossRefGoogle Scholar
  49. 49.
    Ichihara A, Koyama E (1966) Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem (Tokyo) 59: 160–169Google Scholar
  50. 50.
    Jones MR, Kopple JD (1978) Valine metabolism in normal and chronically uremic man. Am J Clin Nutr 31: 1660–1664PubMedGoogle Scholar
  51. 51.
    Jones MR, Kopple JD, Swendseid ME (1978) Phenylalanine metabolism in uremic and normal man Kidney Int 14: 169–179PubMedCrossRefGoogle Scholar
  52. 52.
    Kopple JD (1983) Amino acid metabolism in chronic renal failure. In: Blackburn GL, Grant JP, Young VR (eds) Amino acids. Metabolism and medical applications. John Wright PSG, Boston, pp 451–471Google Scholar
  53. 53.
    Kopple JD (1983) Nitrogen metabolism. In: Massrys SG, Glassock RJ (eds) Textbook of nephrology, vol. 2. pp 7.79–7.87Google Scholar
  54. 54.
    Kopple JD, Swendseid ME (1974) Nitrogen balance and plasma amino acid levels in uremic patients fed an essential amino acid diet. Am J Clin Nutr 27: 806–812PubMedGoogle Scholar
  55. 55.
    Kopple JD, Swendseid ME (1975) Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest 55: 881–891PubMedCrossRefGoogle Scholar
  56. 56.
    Kopple JD, Swendseid ME (1976) Effect of protein intake and uremia on plasma amino acid levels, Kidney Int 10: 560–568Google Scholar
  57. 57.
    Kopple JD, Swendseid ME (1978) Effect of histidine intake on plasma and urine. Histidine levels, nitrogen balance and N-methyl-histidine excretion in normal and chronically uremic men. J Nutr III: 931–942Google Scholar
  58. 58.
    Kopple JD, Mercurio K, Blumenkranz MJ et al. (1981) Daily requirement for pyridoxine supplements in chronic renal failure. Kidney Int 19: 694–704PubMedCrossRefGoogle Scholar
  59. 59.
    Kopple JD, Flugel R, Jones MR (1981) Branched-chain amino acids in chronic renal failure. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Developments in Biochemistry, vol 18. Elsevier, North Holland New York, pp 555–567Google Scholar
  60. 60.
    Laouari D, Kamoun PP, Rocchiccioli F, Dodu C, Kleinknecht C, Broyer M (1986) Efficiency of substitution of 2-ketoisocaproic acid and 2-ketoisovaleric acid in the diet of normal and uremic growing rats. Am J Clin Nutr 44: 832–846PubMedGoogle Scholar
  61. 61.
    Letteri JM, Scipione RA (1974) Phenylalanine metabolism in chronic renal failure. Nephron 13: 365–371PubMedCrossRefGoogle Scholar
  62. 62.
    Maier KP, Hoppe-Seyler G, Talke H, Fröhlich J, Schollmeyer P, Gerok W (1978) Enzymatic and metabolic studies on carbohydrate and amino acid metabolism in rat liver during acute uremia. Eur J Clin Invest 3: 201–207CrossRefGoogle Scholar
  63. 63.
    Mc Coy RH, Meyer CE, Rose WC (1935) Feeding experiments with mixtures of highly purified amino acids. VIII. Isolation and identification of a new essential amino acid. J Biol Chem 112: 283–302Google Scholar
  64. 64.
    McKusick VA (1972) Heritable disorders of connective tissue. Mosby, St. Louis, pp 233–236Google Scholar
  65. 65.
    Mitch WE, Clark AS (1984) Specificity of the effect of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J 222: 579–586PubMedGoogle Scholar
  66. 66.
    Mitch WE, Steinmann TI (1987) Treatment of progressive chronic renal failure. Implications for changing the composition of amino acid and ketoacid supplements. Contrib Nephrol 55: 28–35PubMedGoogle Scholar
  67. 67.
    Mitch WE, Walser M (1977) Nitrogen balance of uremic patients receiving branched chain ketoacids and the hydroxy-analogue of methionine as substitutes for the respective amino acids. Clin Nephrol 8: 341–344PubMedGoogle Scholar
  68. 68.
    Mitch WE, Abras E, Walser M (1982) Long-term effects of a new ketoacid amino acid supplement in patients with chronic renal failure. Kidney Int 22: 48–53PubMedCrossRefGoogle Scholar
  69. 69.
    Odessey R, Goldberg AL (1972) Oxidation of leucine by rat skeletal muscle. Am J Physiol 22: 1376–1383Google Scholar
  70. 70.
    Pickford JC, McGale EHF, Aber GM (1973) Studies on the metabolism of phenylalanine and tyrosine in patients with renal disease. Clin Chim Acta 48: 77–83PubMedCrossRefGoogle Scholar
  71. 71.
    Pitts RF (1973) Production and excretion of ammonia in relation to acid-base regulation. In: Orloff J, Berliner RW (eds) Handbook of Physiology. American Physiological Society, Washington DCGoogle Scholar
  72. 72.
    Randle PJ (1981) Discussion. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Developments in Biochemistry, vol 18. Elsevier, North Holland New York, p 619Google Scholar
  73. 73.
    Richards P, Brown CL, Houghton BJ, Thompson E (1971) Synthesis of phenylalanine and valine by healthy and uremic men. Lancet II: 128–134CrossRefGoogle Scholar
  74. 74.
    Rippich T, Katz N, Mix A, Kluthe R (1977) Applikation von Ketoanalogen essentieller Aminosäuren bei chronischer Niereninsuffizienz. Z Ernährungswiss [Suppl] 19: 43–54Google Scholar
  75. 75.
    Rose EC (1949) Amino acid requirements of man. Proc Fedn Am Socs Exp Biol 8: 546Google Scholar
  76. 76.
    Rubini ME, Gordon S (1968) Individual plasma-free amino acids in uremics: effects of hemodialysis. Nephron 5: 339–351PubMedCrossRefGoogle Scholar
  77. 77.
    Rudman D (1971) Capacity of human subjects to utilize ketoanalogues of valine and phenylalanine. J Clin Invest 50: 90–96PubMedCrossRefGoogle Scholar
  78. 78.
    Saito A, Niwa T, Maeda K, Kobayashi K, Yamamaots J, Ohta K (1980) Tryptophan and indolic tryptophan metabolites in chronic renal failure. Am J Clin Nutr 33: 1402–1406PubMedGoogle Scholar
  79. 79.
    Segal S, Thier SO (1973) Renal handling of amino acids. In: Orloff J, Berliner RW (eds) Handbook of physiology: section 8 renal physiology. American Physiological Society, Washington DCGoogle Scholar
  80. 80.
    Shinnic FL, Harper EA (1977) Effects of branched-chain amino acid antagonism in the rat on tissue amino acid and ketoacid concentrations. J Nutr 107: 887–895Google Scholar
  81. 81.
    Smolin LA, Laidlaw SA, Kopple JD (1987) Altered plasma free and protein-bound sulfur amino acid levels in patients undergoing maintenance hemodialysis. Am J Clin Nutr 45: 737–743PubMedGoogle Scholar
  82. 82.
    Stonier C, McGale EH, Aber GM (1984) Studies of phenylalanine hydroxylase activity in patients with chronic renal failure: the effect of haemodialysis. Clin Chim Acta 143: 115–122PubMedCrossRefGoogle Scholar
  83. 83.
    De Torrente A, Glazer GB, Gulyassy P (1974) Reduced in vitro binding of tryptophan by plasma in uremia. Kidney Int 6: 222–229PubMedCrossRefGoogle Scholar
  84. 84.
    Walser M (1980) Determinants of ureagenesis with particular references to renal failure, Kidney Int 17: 709–721PubMedCrossRefGoogle Scholar
  85. 85.
    Walser M, Lund P, Ruderman NB (1973) Synthesis of essential amino acids from their alpha-ketoanalogues by perfused rat liver and muscle. J Clin Invest 52: 2865–2877PubMedCrossRefGoogle Scholar
  86. 86.
    Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and in the whole body. Elsevier, North Holland Amsterdam, p 656Google Scholar
  87. 87.
    Wilcken DLE, Gupta VJ, Reddy SG (1980) Accumulation of sulphur-containing amino acids including cysteine-homocysteine in patients on maintenance haemodialysis. Clin Sci 58: 427–430PubMedGoogle Scholar
  88. 88.
    Young GA, Parsons FM (1973) Impairment of phenylalanine hydroxylation in chronic renal insufficiency. Clin Sci [Suppl] 45: 89–97PubMedGoogle Scholar
  89. 89.
    Young VR, Pellett L (1987) Protein intake and requirements with reference to diet and health. Am J Clin Nutr 45: 1323–1343PubMedGoogle Scholar
  90. 90.
    Young GA, Keogh JB, Parsons FM (1975) Plasma amino acids and protein levels in chronic renal failure and changes caused by oral supplements of essential amino acids. Clin Chim Acta 61: 205PubMedCrossRefGoogle Scholar
  91. 91.
    Zimmermann EW, Meisinger E, Weinel B, Strauch M (1979) Essential amino acid/ketoanalogue supplementation: an alternative to unrestricted protein intake in uremia. Clin Nephrol 11: 71–78PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin-Heidelberg New York 1989

Authors and Affiliations

  • P. Fürst
    • 1
  1. 1.Institut für Biologische Chemie und ErnährungswissenschaftUniversität HohenheimStuttgartGermany

Personalised recommendations