Effects of Artificial Ventilation on Surfactant Function

  • J. A. H. Bos
  • B. Lachmann


Since its introduction for clinical routine use more than 40 years ago, artificial ventilation has proven to be a life-saving method or therapy in intensive care. It has also remained a topic of much discussion and controversy because artificial ventilation involves a disturbance of normal cardiovascular and respiratory function (Price et al. 1954). That artificial ventilation can lead to decreased lung compliance and a dysfunction of gas exchange is well-known. Even more important is that ventilation by itself can lead to formation of atelectasis, pulmonary edema, pneumonitis, and fibrosis (for review see Tables 1 and 2). To date, no adequate explanation of the pathophysiological basis of all the changes due to artificial ventilation has been documented. However, there is evidence that some of them are induced by alterations to the surfactant system. These findings have stimulated ongoing extensive research in this area in an attempt to explain the side effects of artificial ventilation and to find improved methods of artificial ventilation in which these effects are minimized.


Continuous Positive Airway Pressure Surfactant System Lamellar Body Artificial Ventilation Lung Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benzer H (1969) Respiratorbeatmung und Oberflächenspannung in der Lunge. In: Frey R, Kern F, Mayrhofer O (eds) Anaesthesiologie und Wiederbelebung, 38. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Bos JAH, Schairer W, Schaffers JT, Tenbrinck R, Tenhave-Opbroek AAW, Bakker WH, Wollmer P, Lachmann B (1989) Effect of high frequency jet ventilation (HFJV) on the pulmonary clearance of 99mTc-DTPA in respiratory failure in rabbits. Br J Anaesth 63:59S–64SPubMedCrossRefGoogle Scholar
  3. Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95:170–172PubMedGoogle Scholar
  4. Clements JA, Hustead RE, Johnson RP, Gribnetz I (1961) Pulmonary surface tension and alveolar stability. J Appl Physiol 16:444–450PubMedGoogle Scholar
  5. Delemos RA, Coalson JJ, Gerstmann DR, Null DM, Akerman NB, Escobedo MB, Robotham JL, Kuehl TJ (1987) Ventilatory management of infant baboons with hyaline membrane disease: the use of high frequency ventilation. Pediatr Res 21:594–602PubMedCrossRefGoogle Scholar
  6. Enhorning G (1977) Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol 43:198–203PubMedGoogle Scholar
  7. Ennema JJ, Reijngoud DJ, Wildevuur CRH, Egberts J (1984a) Effects of artificial ventilation on surfactant phospholipid metabolism in rabbits. Respir Physiol 58:15–28PubMedCrossRefGoogle Scholar
  8. Ennema JJ, Reijngoud DJ, Egberts J, Mook PH, Wildevuur CRH (1984b) High-frequency oscillation affects surfactant phospholipid metabolism in rabbits. Respir Physiol 58:29–39PubMedCrossRefGoogle Scholar
  9. Evander E, Wollmer P, Jonson B, Lachmann B (1987) Pulmonary clearance of inhaled 99mTc-DTPA: effects of surfactant depletion by lung lavage. J Appl Physiol 62:1611–1614PubMedGoogle Scholar
  10. Evander E, Wollmer P, Jonson B (1990) Pulmonary clearance of 99mTc-DTPA: effects of ventilatory pattern. Clin Physiol 10:199–209CrossRefGoogle Scholar
  11. Faridy EE (1976a) Effect of distension on release of surfactant in excised dogs’ lungs. Respir Physiol 27:99–114PubMedCrossRefGoogle Scholar
  12. Faridy EE (1976b) Effect of ventilation on movement of surfactant in airways. Respir Physiol 27:323–334PubMedCrossRefGoogle Scholar
  13. Faridy EE, Permutt S, Riley RL (1966) Effect of ventilation on surfactant forces in excised dogs’ lungs. J Appl Physiol 21:1453–1462PubMedGoogle Scholar
  14. Forrest JB (1972). The effect of hyperventilation on pulmonary surface activity. Br J Anaesth 44:313–319PubMedCrossRefGoogle Scholar
  15. Frantz ID III, Stark AR, Davis JM, Davies P, Kitzmiller TJ (1982) High frequency ventilation does not affect pulmonary surfactant, liquid, or morphological features in normal cats. Am Rev Respir Dis 126:909–913PubMedGoogle Scholar
  16. Greenfield LJ, Ebert PA, Benson DW (1964) Effect of positive pressure ventilation on surface tension properties of lung extracts. Anaesthesia 25:312–316CrossRefGoogle Scholar
  17. Gruenwald PA (1963) A numerical index of the stability of lung expansion. J Appl Physiol 18:665–667Google Scholar
  18. Guyton AC, Moffatt DS, Adair TA (1980) Role of alveolar surface tension in transepithelial movement of fluid. In: Robertson B, Van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 171–185Google Scholar
  19. Hildebran JN, Goerke J, Clements JA (1981) Surfactant release in excised rat lung is stimulated by air inflation. J Appl Physiol (Respir Environ Exercise Physiol) 51:905–910Google Scholar
  20. Lachmann B (1985) Possible function of bronchial surfactant. Eur J Respir Dis 67:49–61Google Scholar
  21. Lachmann B (1989) Surfactant replacement. Appl Cardiopulm Pathophysiol 3:3–11Google Scholar
  22. Lachmann B, Freyse EJ, Grossmann G, Robertson B (1981) Lung-thorax compliance in the artificially ventilated premature rabbit neonate in relation to variations in inspiratiomexpiration ratio. Pediatr Res 15:833–838PubMedGoogle Scholar
  23. Lachmann B, Jonson B, Lindroth M, Robertson B (1982) Modes of artificial ventilation in severe distress syndrome. Crit Care Med 10:724–732PubMedCrossRefGoogle Scholar
  24. Macklem PT, Proctor DF, Hogg JC (1970) The stability of peripheral airways. Respir Physiol 8:191–203PubMedCrossRefGoogle Scholar
  25. Man GCW, Ahmed IH, Logus JW, Man SFP (1987) High-frequency oscillatory ventilation increases canine epithelial permeability. J Appl Physiol 63:1871–1876PubMedGoogle Scholar
  26. Massaro GD, Massaro D (1983) Morphologic evidence that large inflations of the lung stimulate secretion of surfactant. Am Rev Respir Dis 127:235–236PubMedGoogle Scholar
  27. McClenahan JB, Urtnowski A (1967) Effect of ventilation on surfactant and its turnover rate. J Appl Physiol 23:215–220PubMedGoogle Scholar
  28. McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192PubMedGoogle Scholar
  29. Mead J, Collier C (1959) Relation of volume history of lungs to respiratory mechanics in anesthetized dogs. J Appl Physiol 14:669–678Google Scholar
  30. Nilsson R, Grossmann G, Robertson B (1978) Lung surfactant and the pathogenesis of neonatal bronchiolar lesions induced by artificial ventilation. Pediatr Res 12:249–255PubMedCrossRefGoogle Scholar
  31. Obara H, Maekawa N, Hamatani S, Iwai S (1987) Effect of combined high-frequency oscillatory ventilation on rabbit alveolar type II cells. Crit care Med 15:692–695PubMedGoogle Scholar
  32. Oyarzùn MJ, Clements JA (1977) Ventilatory and cholinergic control of pulmonary surfactant in the rabbit. J Appl Physiol (Respir Environ Exercise Physiol) 43:39–45Google Scholar
  33. Oyarzun MJ, Clements JA, Baritussio A (1980) Ventilation enhances pulmonary alveolar clearance of radioactive dipalmitoyl phosphatidylcholine in liposomes. Am Rev Respir Dis 121:709–721PubMedGoogle Scholar
  34. Price HL, Connor EH, Dripps RD (1954) Some respiratory and circulatory effects of mechanical respirators. J Appl Physiol 6:517PubMedGoogle Scholar
  35. Reinfenrath R (1983) Surfactant action in bronchial mucus. In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier, Amsterdam, pp 339–347Google Scholar
  36. Rensch H, von Seefeld H (1984) Surfactant-mucus interaction. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 203–214Google Scholar
  37. Rüfer R (1967) Der Einflu047 oberflächenaktiver Substanzen auf Entfaltung und Retraktion isolierter lungen. Pflugers Arch Gesmate Physiol 298:170–184CrossRefGoogle Scholar
  38. Solimano A, Bryan C, Jobe A, Ikegami M, Jacobs H (1985) Effects of high-frequency and conventional ventilation on the premature lamb lung. J Appl Physiol 59:1571–1577PubMedGoogle Scholar
  39. Thet LA, Alvarez H (1982) Effect of hyperventilation and starvation on rat lung mechanics and surfactant. Am Rev Respir Dis 126:286–290PubMedGoogle Scholar
  40. Thet LA, Clerch L, Massaro GD, Massaro D (1979) Changes in sedimentation of surfactant in ventilated excised rat lungs. J Clin Invest 64:600–608PubMedCrossRefGoogle Scholar
  41. Wauer R, Lachmann B (1972) Die Ventilette, ein Notfallbeatmungsgerät für Neugeborene und Säuglinge-ein Erprobungsbericht. padiatr Grenzgeb 11:411–422PubMedGoogle Scholar
  42. Webb H, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  43. Wollmer P, Evander E, Jonson B (1989a) Assessment of surfactant function by measurement of the pulmonary clearance of inhaled 99mTc-DTPA. In: Lachmann B (ed) Surfactant replacement therapy in neonatal and adult respiratory distress syndrome. Springer, Berlin Heidelberg New York; pp 66–76Google Scholar
  44. Wollmer P, Evander E, Jonson B, Lachmann B (1989b) Pulmonary clearance of inhaled 99mTc-DTPA and surfactant function: In: Ekelund L, Jonson B, Malm L (eds) Surfactant and the respiratory tract. Elsevier, Amsterdam, pp 97–102Google Scholar
  45. Wyszogrodski I, Kyei-Aboagye K, Taeusch HW Jr, Avery ME (1975) Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure. J Appl Physiol 38:461–466PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. A. H. Bos
  • B. Lachmann

There are no affiliations available

Personalised recommendations