Skip to main content

The Pulmonary Surfactant System: Its Contribution to Lung Alveolar Stability, Alteration in Acute Respiratory Failure, and Replacement as a Therapeutical Concept

  • Conference paper
New Aspects on Respiratory Failure
  • 65 Accesses

Abstract

Sufficient amounts of biologically active pulmonary surfactant, a lipoprotein complex that lines air sacs in all mammalian lungs, are crucial for normal lung function [10]. Deficient pulmonary surfactant is the primary cause of the respiratory distress syndrome so common in premature infants [14] and alterations have also been found in adult patients with acute respiratory failure [21, 47, 48]. Therefore, replacement of deficient or inactive surfactant for the prevention and treatment of respiratory distress syndrome of various etiologies might become an important pharmacological approach. Clinical studies in new born infants have reported consistent short-term effects on lung function following tracheal instillation of both natural surfactant, derived from animal lung tissue or human amniotic fluid, and synthetic preparations [11, 25, 29]. Comparable effects have been reported for surfactant replacement in adult patients with severe respiratory failure [38].

This study was supported by Deutsche Forchungsgemeinschaft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 97:517–523

    CAS  Google Scholar 

  2. Baughman RP, Mangels DJ, Strohofer S, Corser BC (1987) Enhancement of macrophage and monocyte cytotoxicity by the surface active material of lung lining fluid. J Lab Clin Med 109:692–697

    PubMed  CAS  Google Scholar 

  3. Benson BJ, Dobbs LG, Ansfield MJ (1983) Immunopharmacology of lung surfactant. In: Newball HH (ed) Immunopharmacology of the lung. Dekker, New York, pp 209–241

    Google Scholar 

  4. Benson BJ, Williams MC, Sueishi K, Goerke J, Sargeant T (1984) Role of calcium ions in the structure and function of pulmonary surfactant. Biochim Biophys Acta 793:18–27

    PubMed  CAS  Google Scholar 

  5. Benson BJ, Hawgood S, Schilling J, Clements JA, Damm D, Cordell B, White RT (1985) Structure of canine pulmonary surfactant apoprotein: cDNA and complete amino acid sequence. Proc Natl Acad Sci USA 82:6379–6383

    Article  PubMed  CAS  Google Scholar 

  6. Beppu OS, Clements JA, Goerke J (1983) Phosphatidylglycerol-deficient lung surfactant has normal properties. J Appl Physiol 55:496–502

    PubMed  CAS  Google Scholar 

  7. Brown ES (1964) Isolation and assay of dipalmityl lecithin in lung extracts. Am J Physiol 207:402–406

    PubMed  CAS  Google Scholar 

  8. Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95:170–172

    PubMed  CAS  Google Scholar 

  9. Clements JA (1961) Pulmonary edema and permeability of alveolar membranes. Arch Environ Health 2:280–283

    PubMed  CAS  Google Scholar 

  10. Clements JA, Tierney DF (1965) Alveolar instability associated with altered surface tension. In: Fenn WO, Rahn H (eds) Respiration. American Physiological Society, Washington, pp 1565–1583 (Handbook of physiology, Sect 3, vol 2)

    Google Scholar 

  11. Collaborative European Multicenter Study Group (1988) Surfactant replacement therapy for severe respiratory distress syndrome: an international randomized clinical trial. Pediatrics 82:683–691

    Google Scholar 

  12. Coonrod JD, Jarrells MC, Yoneda K (1986) Effect of rat surfactant lipids on complement and Fc receptors of macrophages. Infect Immun 54:371–378

    PubMed  CAS  Google Scholar 

  13. Drickamer K, Dordal MS, Reynolds L (1986) Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. J Biol Chem 161:6878–6887

    Google Scholar 

  14. Farrell PM, Avery ME (1975) Hyaline membrane disease. Am Rev Respir Dis 111:657–688

    PubMed  CAS  Google Scholar 

  15. Floros J, Steinbrink R, Jacobs K, Phelbs D, Kriz R, Recny M, Sultzman L, Jones S, Taesch HW, Frank HA, Fritsch EF (1986) Isolation and characterization of cDNA clones for the 35-kDa pulmonary surfactant-associated protein. J Biol Chem 261:9029–9033

    PubMed  CAS  Google Scholar 

  16. Fuchimukai T, Fujiwara T, Takahashi A, Enhorning G (1987) Artificial pulmonary surfactant inhibited by proteins. J Appl Physiol 62:429–437

    Article  PubMed  CAS  Google Scholar 

  17. Glasser SW, Korfhagen TR, Weaver T, Pilot-Matias T, Fox JL, Whitsett JA (1987) cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL(Phe). Proc Natl Acad Sci USA 84:4007–4011

    Article  PubMed  CAS  Google Scholar 

  18. Goerke J, Clements JA (1986) Alveolar surface tension and lung surfactant. In: Macklem PT, Mead J (eds) The respiratory system. American Physiological Society Washington, pp 247–261 (Handbook of physiology, vol 3)

    Google Scholar 

  19. Groniowski JA (1983) Fine structure basis of pulmonary surfactant. Int Rev Exp Pathol 25:183–238

    PubMed  CAS  Google Scholar 

  20. Guyton AC, Moffatt DS (1981) Role of surface tension and surfactant in the transepithelial movement of pulmonary edema. Prog Respir Res 15:62–75

    Google Scholar 

  21. Hallman M, Spragg R, Harrell JH, Moser KM, Gluck L (1982) Evidence of lung surfactant abnormality in respiratory failure. J Clin Invest 70:673–683

    Article  PubMed  CAS  Google Scholar 

  22. Hawgood S, Benson BJ (1989) The molecular biology of surfactant apoproteins. In: Massaro D (ed) Lung cell biology. Dekker, New York, pp 701–734

    Google Scholar 

  23. Hawgood S, Efrati H, Schilling J, Benson BJ (1985) Chemical characterization of lung surfactant apoproteins: amino acid composition, N-terminal sequence and enzymic digestion. Biochem Soc Trans 13:1092–1096

    PubMed  CAS  Google Scholar 

  24. Hawgood S, Benson BJ, Schilling J, Damm D, Clements JA, White RT (1987) Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28–36 in surfactant lipid adsorption. Proc Natl Acad Sci USA 84:66–70

    Article  PubMed  CAS  Google Scholar 

  25. Horbar JD, Soll RF, Sutherland JM, Kotagal U, Philip AGS, Kessler DL, Little GA, Edwards WH, Vidyasagar D, Raju TNK, Jobe AH, Ikegami M, Mullett MD, Myerberg DZ, McAuliffe TL, Lucey JF (1989) A multicenter randomized, placebo-controlled trial of surfactant therapy for respiratory distress syndrome. N Engl J Med 320:959–965

    Article  PubMed  CAS  Google Scholar 

  26. Ikegami M, Jobe A, Berry D (1986) A protein that inhibits surfactant in respiratory distress syndrome. Biol Neonate 50:121–129

    Article  PubMed  CAS  Google Scholar 

  27. Ikegami M, Adams FH, Towers B, Osher AB (1980) The quantity of natural surfactant necessary to prevent the respiratory distress syndrome in premature lambs. Pediatr Res 14:1082–1085

    Article  PubMed  CAS  Google Scholar 

  28. Jarstrand C (1984) Role of surfactant in the pulmonary defense system. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 187–201

    Google Scholar 

  29. Jobe A, Ikegami M (1987) Surfactant for the treatment of respiratory distress syndrome. Am Rev Respir Dis 136:1256–1275

    Article  PubMed  CAS  Google Scholar 

  30. Juers JA, Rogers RM, McCurdy JB, Cook WW (1976) Enhancement of bactericidal capacity of alveolar macrophages by human alveolar lining material. J Clin Invest 58:271–275

    Article  PubMed  CAS  Google Scholar 

  31. Kilburn KH (1968) A hypothesis for pulmonary clearance and its implication. Am Rev Respir Dis 98:449–463

    PubMed  CAS  Google Scholar 

  32. King RJ, Clements JA (1972) Surface active materials from dog lung. I. Methods of isolation. Am J Physiol 223:707–714

    PubMed  CAS  Google Scholar 

  33. King RJ, Clements JA (1972) Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol 223:715–726

    PubMed  Google Scholar 

  34. King RJ, Clements JA (1985) Lipid synthesis and surfactant turnover in the lungs. In: Fishman AP, Fisher AB (eds) Circulation and nonrespiratory functions. American Physiological Society, Washington, pp 309–336 (Handbook of physiology, sect 3, vol 1)

    Google Scholar 

  35. King RJ, Simon D, Horowitz PM (1989) Aspects of secondary and quarternary structure of surfactant protein A from canine lung. Biochim Biophys Acta 1001:294–301

    PubMed  CAS  Google Scholar 

  36. Kulovich MV, Hallman M, Gluck L (1979) The lung profile: normal pregnancy. Am J Obstet Gynecol 135:57–63

    PubMed  CAS  Google Scholar 

  37. Kuroki Y, Takahashi H, Fukada Y, Mikawa M, Inagawa A, Fujemoto S, Akino T (1985) Two site “simultaneous” immunoassay with monoclonal antibodies for the determination of surfactant apoproteins in human amniotic fluid. Pediatr Res 19:1017–1020

    Article  PubMed  CAS  Google Scholar 

  38. Lachmann B (1987) The role of pulmonary surfactant in the pathogenesis and therapy of ARDS. In: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 123–134

    Google Scholar 

  39. LaForce FM, Kelly WJ, Huber GL (1973) Inactivation of Staphylococci by alveolar macrophages with preliminary observations on the importance of alveolar lining material. Am Rev Respir Dis 108:784–790

    PubMed  CAS  Google Scholar 

  40. Liau DF, Barrett CR, Bell ALL, Cermansky G, Ryan SF (1984) diphsophatidylglycerol in experimental acute alveolar injury in the dog. J Lipid Res 25:678–683

    PubMed  CAS  Google Scholar 

  41. Liau DF, Barrett CR, Bell ALL, Ryan SF (1987) Functional abnormalities of lung surfactant in experimental acute alveolar injury in the dog. Am Rev Respir Dis 136:395–401

    Article  PubMed  CAS  Google Scholar 

  42. Neergaard K von (1929) Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Gesamte Exp Med 66:373–394

    Article  Google Scholar 

  43. Notter RH (1984) Surface chemistry of pulmonary surfactant: the role of individual components. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 17–65

    Google Scholar 

  44. Notter RH, Finkelstein JN (1984) Pulmonary surfactant: an interdisciplinary approach. J Appl Physiol 57:1613–1624

    PubMed  CAS  Google Scholar 

  45. Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175:1125–1126

    Article  PubMed  CAS  Google Scholar 

  46. Pattle RE (1965) Surface lining of lung alveoli. Physiol Rev 45:48–79

    PubMed  CAS  Google Scholar 

  47. Pison U, Seeger W, Buchhorn R, Brand M, Joka T, Obertacke U, Schmit-Neuerburg KP, Neuhof H (1989) Surfactant abnormalities in patients with respiratory failure following multiple trauma. Am Rev Respir Dis 140:1033–1039

    PubMed  CAS  Google Scholar 

  48. Pison U, Obertacke U, Brand M, Seeger W, Joka T, Bruch J, Schmit-Neuerburg KP (1990) Altered pulmonary surfactant in uncomplicated and septicemia-complicated courses of acute respiratory failure. J Trauma 30:19–26

    Article  PubMed  CAS  Google Scholar 

  49. Pison U, Tarn EK, Caughey GH, Hawgood S (1989) Proteolytic inactivation of dog lung surfactant-associated proteins by neutrophil elastase. Biochim Biophys Acta 992: 251–7

    Article  PubMed  CAS  Google Scholar 

  50. Pison U, Shiffer K, Hawgood S, Goerke J (1989) Effects of the surfactant-associated proteins, SP-A, SP-B and SP-C, on phospholipid surface film formation. Prog Respir Res 25: 1–3

    Google Scholar 

  51. Possmayer F (1988) Perspective: A proposed nomenclature for pulmonary surfactant-associated proteins. Am Rev Respir Dis 138:990–998

    Article  PubMed  CAS  Google Scholar 

  52. Post M, van Golde LMG (1988) Metabolic and developmental aspects of the pulmonary surfactant system. Biochim Biophys Acta 947:249–286

    PubMed  CAS  Google Scholar 

  53. Rooney SA (1985) The surfactant system and lung phospholipid biochemistry. Am Rev Respir Dis 131:439–460

    PubMed  CAS  Google Scholar 

  54. Sano K, Fisher J, Mason RJ, Kuroki Y, Schilling J, Benson B, Voelker D (1987) Isolation and sequence of a cDNA clone for the rat pulmonary surfactant-associated protein (PSP-A). Biochem Biophys Res Commun 144:367–374

    Article  PubMed  CAS  Google Scholar 

  55. Schürch S, Goerke J, Clements JA (1976) Direct determination of surface tension in the lung. Proc Natl Acad Sci USA 75:3417–3421

    Article  Google Scholar 

  56. Seeger W, Stohr G, Wolf HRD, Neuhof H (1985) Alteration of surfactant due to protein leakage: special interaction with fibrin monomer. J Appl Physiol 58:326–338

    PubMed  CAS  Google Scholar 

  57. Sitrin RG, Ansfield MJ, Kaltreider HB (1985) The effect of pulmonary surface-active material on the generation and expression of murine B and T-lymphocyte effector functions in vitro. Exp Lung Res 9:85–97

    Article  PubMed  CAS  Google Scholar 

  58. Suzuki Y, Fujita Y, Kogishi K (1989) Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis 140:75–81

    Article  PubMed  CAS  Google Scholar 

  59. Taeusch HW, Clements JA, Benson B (1983) Exogenous surfactant for human lung disease. Am Rev Respir Dis 128:791–793

    PubMed  Google Scholar 

  60. Van Golde LMG, Batenburg JJ, Robertson B (1988) Metabolism of phospholipids in the lung. Physiol Rev 68:374–455

    PubMed  Google Scholar 

  61. Voss T, Eistetter H, Schäfer KP, Engel J (1988) Macromolecular organization of natural and recombinant lung surfactant protein SP 28–36. Structural homology with the complement factor Clq. J Mol Biol 201:219–227

    Article  PubMed  CAS  Google Scholar 

  62. Walker SR, Williams MC, Benson BJ (1986) Immunocytochemical localization of the major surfactant apoproteins in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem 34:1137–1148

    Article  PubMed  CAS  Google Scholar 

  63. Warr RG, Hawgood S, Buckley DI, Crisp TM, Schilling J, Benson BJ, Clements JA, White RT (1987) Low molecular weight human surfactant protein (SP 5): isolation, characteristics and cDNA and amino acid sequences. Proc Natl Acad Sci USA 84:7915–7919

    Article  PubMed  CAS  Google Scholar 

  64. White RT, Damm D, Buckley D, Hawgood S, Spratt K, Schilling J, Benson B (1987) Expression, characterization and in vitro activity of recombinant surfactant protein SP 28–36. Pediatr Res 21:469a

    Google Scholar 

  65. White RT, Damm D, Miller J, Spratt K, Schilling J, Hawgood S, Benson B, Cordeil B (1985) Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature 317:361–363

    Article  PubMed  CAS  Google Scholar 

  66. Whitsett JA, Weaver T, Hull W, Ross G, Dion C (1985) Synthesis of surfactant-associated glycoprotein A by rat type II epithelial cells. Primary translation products and post-transla-tional modification. Biochim Biophys Acta 828:162–171

    Article  PubMed  CAS  Google Scholar 

  67. Whitsett JA, Ohning BL, Ross G, Meuth J, Weaver T, Holm BA, Shapiro DL, Notter RH (1986) Hydrophobic surfactant-associated protein in whole lung surfactant and its importance for biophysical activity in lung surfactant extracts used for replacement therapy. Pediatr Res 20:460–467

    Article  PubMed  CAS  Google Scholar 

  68. Williams MC (1977) Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J Cell Biol 72:260–277

    Article  PubMed  CAS  Google Scholar 

  69. Williams MC (1987) Vesicles within vesicles: what role do multivesicular bodies play in alveolar type II cells? Am Rev Respir Dis 135:744–746

    PubMed  CAS  Google Scholar 

  70. Wilson TA, Bachofen H (1982) A Model for the mechanical structure of the alveolar duct. J Appl Physiol 52:1064–1070

    PubMed  CAS  Google Scholar 

  71. Wright JR, Clements JA (1989) Lung surfactant turnovers and factors that affect turnover. In: Massaro D (ed) Lung cell biology. Dekker, New York, pp 655–699

    Google Scholar 

  72. Wright JR, Clements JA (1987) Metabolism and turnover of lung surfactant. Am Rev Respir Dis 135:426–444

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pison, U., Hawgood, S. (1992). The Pulmonary Surfactant System: Its Contribution to Lung Alveolar Stability, Alteration in Acute Respiratory Failure, and Replacement as a Therapeutical Concept. In: Rügheimer, E. (eds) New Aspects on Respiratory Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74943-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74943-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74945-2

  • Online ISBN: 978-3-642-74943-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics