Inflation and Atelectasis in a Topographical Model of the Lung

  • Y. C. Fung
Conference paper


Instability and atelectasis of the lung are discussed in this article. The word instability, like the word disease, has no unique meaning. Here I mean the tendency of a system toward returning to the initial state after an arbitrary infinitesimal perturbation: A system is stable if it would return, unstable if the return is not guaranteed.


Surface Tension Alveolar Wall Potential Energy Function Pleural Pressure Elastin Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clements JA, Tierney DF (1965) Alveolar instability associated with altered surface tension. In: Fenn WO, Rahn H (eds) Respiration. American Physiological Society, Bethesda, pp 1565–1583 (Handbook of physiology, sect 3, vol II, chap 69)Google Scholar
  2. Fleischner FG (1936) Über das Wesen der basalen horizontalen Schattenstreifen im Lungenfeld. Wien Arch Inn Med 28:461–480Google Scholar
  3. Frasher RG, Paré JAP (1970) Diagnosis of diseases of the chest. Saunders, PhiladelphiaGoogle Scholar
  4. Fung YC (1965) Foundations of solid mechanics. Prentice-Hall, New JerseyGoogle Scholar
  5. Fung YC (1975a) Stress, deformation, and atelectasis of the lung. Circ Res 37:481–496PubMedGoogle Scholar
  6. Fung YC (1975b) Does the surface tension make the lung inherently unstable? Circ Res 37:497–502PubMedGoogle Scholar
  7. Fung YC (1984) Biodynamics: circulation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Fung YC (1988) A model of the lung structure and its validation. J Appl Physiol 64:2132–2141PubMedGoogle Scholar
  9. Fung YC, Liu SQ (1989) Change of residual strain in arteries due to hypertrophy caused by aortic constriction. Circ Res 65:1340–1349PubMedGoogle Scholar
  10. Fung YC, Liu SQ (1991) Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J Appl Physiol 70:2455–2470PubMedCrossRefGoogle Scholar
  11. Goerke J, Clements JA (1986) Alveolar surface tension and lung surfactant. In: Fishman AP, Macklem PT, Mead J (eds) Mechanics of breathing, part 1. American Physiological Society, Bethesda, pp 247–261 (Handbook of physiology, sect 3. The respiratory system, vol III)Google Scholar
  12. Hansen JE, Ampaya EP (1975) Human air space shapes, sizes, areas, and volumes. J Appl Physiol 38:990–995PubMedGoogle Scholar
  13. Hansen JE, Ampaya EP, Bryant GH, Navin JJ (1975) The branching pattern of airways and air spaces of a single human terminal bronchiole. J Appl Physiol 38:983–989PubMedGoogle Scholar
  14. Hoppin FG, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering aspects of the lung. Dekker, New YorkGoogle Scholar
  15. Liu SQ, Fung YC (1989) Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction. J Biomech Eng 111:325–335PubMedCrossRefGoogle Scholar
  16. Matsuda M, Fung YC, Sobin SS (1987) Collagen and elastin fibers in human pulmonary alveolar mouths and ducts. J Appl Physiol 63:1185–1194PubMedGoogle Scholar
  17. Mercer RR, Crapo JD (1987) Three-dimensional reconstruction of the rat acinus. J Appl Physiol 63: 785–794PubMedGoogle Scholar
  18. Miller WS (1947) The lung, 2nd edn. Thomas, SpringfieldGoogle Scholar
  19. Oldmixon EH, Hoppin FG (1987) Lengths and topology of septal borders (abstract). Fed Proc 46:820Google Scholar
  20. Oldmixon EH, Butler JP, Hoppin FG Jr (1988) Dihedral angles between alveolar septa. J Appl Physiol 64:299–307PubMedGoogle Scholar
  21. Orsos F (1936) Die Gerüstsysteme der Lunge und deren physiologische und pathologische Bedeutung. Beitr Klin Tuberk Spezifischen Tuberk Forsch 87:568–609CrossRefGoogle Scholar
  22. Smith JC, Stamenovic D (1986) Surface forces in lungs. I. Surface tension-lung volume relationships. J Physiol 60:1341–1350Google Scholar
  23. Stamenovic D (1986) The mixture of phases and elastic stability of lungs with constant surface forces. Math Modeling 7:1071–1082CrossRefGoogle Scholar
  24. Sobin SS, Fung YC, Tremer HM (1988) Collagen and elastin fibers in human pulmonary alveolar walls. J Appl Physiol 64:1659–1675PubMedGoogle Scholar
  25. Von Neergaard K (1929) Neue Auffassuxgen über einen Grundbegriff der Atemmechanik: die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Gesamte Exp Med 66:373–394CrossRefGoogle Scholar
  26. Weibel EG (1963) Morphometry of the human lung. Academic, New YorkGoogle Scholar
  27. Wilson TA (1982) Surface tension-surface area curves calculated from pressure-volume loops. J Appl Physiol 53:1512–1520PubMedGoogle Scholar
  28. Wilson TA, Bachofen H (1982) A model for mechanical structure of the alveolar duct. J Appl Physiol 56:1064–1070Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Y. C. Fung

There are no affiliations available

Personalised recommendations