Advertisement

Biological Basis of Thermotherapy (With Special Reference to Oncology)

  • C. Streffer
Part of the Clinical Thermology book series (CLIN THERM)

Abstract

Surgical resection of malignant tissues, radiotherapy, and chemotherapy have developed as the three solid columns for tumor therapy. Despite many improvements and refinements of these therapy modalities, it has proved impossible to develop cures for a great number of individual malignancies, and frequently this is even true of reasonable palliative treatment. Moreover, cancers can frequently develop a high resistance to ionizing radiation or chemotherapeutic drugs. The search for new therapy modalities is necessary in order to overcome such resistance.

Keywords

Cell Killing Chinese Hamster Cell Thermal Enhancement MeWo Cell Hyperthermic Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam G, Neumann H, Hinkelbein W, Weth R, Engelhardt R (1983) Metabolic changes in hyperthermia with chemotherapy. In: Engelhardt R (ed) Proceedings of the 13th international congress of chemotherapy. Vienna, pp 37–40, session 12.10, part 273Google Scholar
  2. Adwankar MK, Chitnis MP (1984) Effect of hyperthermia alone and in combination with anticancer drugs on the viability of P388 leukemic cells. Tumori 70:231–234PubMedGoogle Scholar
  3. Ahnström G, Edvardsson KA (1974) Radiation-induced single-strand breaks in DNA determined by rate of alkaline strand separation and hydroxylapartite chromatography: an alternative to velociy sedimentation. Int J Radiat Biol 26:493–497CrossRefGoogle Scholar
  4. Alper T (1979) Cellular radiobiology. Cambridge University Press, CambridgeGoogle Scholar
  5. Altman K, Gerber GB, Okada S (1970) Radiation-biochemistry. Academic, New YorkGoogle Scholar
  6. Anderson RL, Minton KW, Li GC, Hahn GM (1981) Temperature induced homeoviscous adaptation of Chinese hamster ovary cells. Biochim Biophys Acta 641:334–348PubMedCrossRefGoogle Scholar
  7. Anderson RL, Ahier RG, Littleton JM (1983) Observations on the cellular effects of ethanol and hyperthermia in vivo. Radiat Res 94:318–325PubMedCrossRefGoogle Scholar
  8. Anderstam B, Harms-Ringdahl M (1988) Increased antineoplastic activity of combined hyperthermic and bleomycin treatments in an adenocarcinoma after glutathione depletion in vivo. Int J Hyperthermia 4:297–306PubMedCrossRefGoogle Scholar
  9. Ando K, Urano M, Kenton L, Kahn J (1987) Effect of ther-mochemotherapy on the development of spontaneous lung metastases. Int J Hyperthermia 3:453–458PubMedCrossRefGoogle Scholar
  10. Anghilari LJ, Crone-Escanye MC, Marchai C, Robert J (1984) Plasma membrane changes during hyperthermia: probable role of ionic modification in tumor cell death. In: Overgaard J (ed) Hyperthermic oncology, vol I, pp 49–52Google Scholar
  11. Ashburner J, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17:241–254PubMedCrossRefGoogle Scholar
  12. Atkinson ER (1977) Hyperthermia dose definition. J Bioengineering 1:487–492Google Scholar
  13. Auersperg N (1966) Differential heat sensitivity of cells in tissue culture. Nature 209:415–416PubMedCrossRefGoogle Scholar
  14. Barlogie B, Corry PM, Drewinko B (1980) In vitro ther-mohemotherapy of human colon cancer cells with cis-dichlorodiammineplatinum (II) and mitomycin C. Cancer Res. 40:1165–1166PubMedGoogle Scholar
  15. Bass H, Moore JL, Coakely WT (1978) Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions. Int J Radiat Biol 33:57–67CrossRefGoogle Scholar
  16. Belli JA, Bonte FJ (1963) Influence of temperature on the radiation response of mammalian cells in tissue culture. Radiat Res 18:272–276PubMedCrossRefGoogle Scholar
  17. Belt JA, Thomas JA, Buchsbaum RN, Racker E (1979) Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry 18:3506–3511PubMedCrossRefGoogle Scholar
  18. Ben-Hur E, Riklis E (1979) Enhancement of thermal killing by polyamines, IV. Effects of heat sensitivity and spermine on protein synthesis and ornithine decarboxylase. Cancer Biochem. Biophys. 4:25–31PubMedGoogle Scholar
  19. Ben-Hur E, Bronk VB, Elkind MM (1972) Thermally enhanced radiosensitivity of cultured Chinese hamster cells. Nature 238:209–211CrossRefGoogle Scholar
  20. Ben-Hur E, Elkind MM, Bronk BV (1974) Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res 58:38–51PubMedCrossRefGoogle Scholar
  21. Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O (1977) Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res 37:3780–3784PubMedGoogle Scholar
  22. Bleehen NM, Honess DJ, Morgan JE (1977) Interaction of hyperthermia and the hypoxic cell sensitizer Ro-07–0582 on the EMT 6 mouse tumor. Brit J Cancer 35:299–306PubMedCrossRefGoogle Scholar
  23. Boonstra J, Schamhart DHJ, de Laat SW, van Wijk R (1984) Analysis of K+ and Na+ transport and intracellular contents during and after heat shock and their role in protein synthesis in rat hepatoma cells. Cancer Res 44:955–960PubMedGoogle Scholar
  24. Borelli MJ, Wong RSL, Dewey WC (1986) A direct correlation between hyperthermia-induced membrane blebbing and survival in synchronous G1 CHO cells. J Cell Physiol 126:181–190CrossRefGoogle Scholar
  25. Bowler K, Duncan CJ, Gladwell RT, Davison TF (1973) Cellular heat injury. Comp Biochem Physiol [A] 45:441–45ßCrossRefGoogle Scholar
  26. Braun J, Hahn GM (1975) Enhanced cell killing by bleomycin and 43 °C hyperthermia and the inhibition of recovery from potentially lethal damage. Cancer Res 35:2921–2927PubMedGoogle Scholar
  27. Breasted JH (1930) The Edwin Smith surgical papyrus. In: Licht S (ed) Therapeutic heat and cold, 2nd edn. Waverly, pp 196–211Google Scholar
  28. Breipohl W, van Beuningen D, Ummels M, Streffer C, Schönfelder B (1983) Effect of hyperthermia on the intestinal mucosa of mice. Verh Anat Ges 77:567–569Google Scholar
  29. Britt RH, Lyons BE, Pounds DW, Prionas SD (1983) Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumors. Med Instrum 17:172–177PubMedGoogle Scholar
  30. Bull JM (1983) Systemic hyperthermia: background and principles. In: Storm FK, Hall GK (eds) Hyperthermia in cancer therapy. Medical, Boston, pp 401–405Google Scholar
  31. Burdon RH (1985) Heat shock proteins. In: Overgaard J (ed) Hyperthermic Oncology, vol II. Taylor and Francis, London pp 223–230Google Scholar
  32. Burdon RH (1988) Hyperthermic toxicity and the modulation of heat damage to cell protein synthesis in HeLa cells. Recent Results Cancer Res 109:1–8PubMedGoogle Scholar
  33. Burdon RH, Cutmore CMM (1982) Human heat shock gene expression and the modulation of plasma membrane Na+/K+ ATPase activity. FEBS Lett 140:45–48PubMedCrossRefGoogle Scholar
  34. Burdon RH, Slater A, McMahon M, Cato ACB (1982) Hyperthermia and heat shock proteins and HeLa cells. Br J Cancer 45:953–963PubMedCrossRefGoogle Scholar
  35. Burdon RH, Kerr SM, Cutmore CMM, Munro J, Gill V (1984) Hyperthermia, Na+K+ ATPase and lactic acid production in some human tumour cells. Br J Cancer 49:437–445PubMedCrossRefGoogle Scholar
  36. Burger F, Engelbrecht FW (1967) Changes in blood composition in experimental heat stroke. S Afr Med J 41:718–721PubMedGoogle Scholar
  37. Busch W (1866) Über den Einfluss welche heftigere Erysipeln zuweilig auf organisierte Neubildungen ausüben. Vrh. Natur-hist. Preuss Rhein Westphal 23:28–30Google Scholar
  38. Calderwood SK, Hahn GM (1983) Thermal sensitivity and resistance of insulin-receptor binding. Biochim Biophys Acta 756:1–8PubMedCrossRefGoogle Scholar
  39. Calderwood SK, Bump EA, Stevenson MA, van Kersen I, Hahn GM (1985) Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cell stressed with starvation and heat. J Cell Physiol 124:261 – 268PubMedCrossRefGoogle Scholar
  40. Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Moricca G, Rossi-Fanelli A (1967) Selective heat sensitivity of cancer cells (biochemical and clinical studies). Cancer 20:1351–1381PubMedCrossRefGoogle Scholar
  41. Chen TT, Heidelberger C (1969) Quantitative studies on the malignant transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro. Int J Cancer 4:166–178PubMedCrossRefGoogle Scholar
  42. Chlebowski RT, Block JB, Cundiff D, Dietrich MF (1982) Doxorubicin cytotoxicity enhanced by local anaesthetics in a human melanoma cell line. Cancer Treat Rep 66:121–125PubMedGoogle Scholar
  43. Clark EP, Lett JT (1978) Possible mechanisms for hyperthermic inactivation of the rejoining of X-ray induced DNA strand breaks. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the 2nd international symposium, Essen, June 2–4 1977. Urban and Schwarzenberg, Baltimore, pp 144–145Google Scholar
  44. Clawson RE, Egorin MJ, Fox BM, Ross LA, Bachur NR (1981) Hyperthermic modification of cyclophosphamide metabolism in rat heptic microsomes and liver slices. Life Sci 28:1133–1137PubMedCrossRefGoogle Scholar
  45. Cohen GL, Bauer WR, Barton JK et al. (1979) Binding of cis-and trans-dichlorodiamineplatinum (II) to DNA: evidence for unwinding and shortening of the double helix. Science 203:1014–1016PubMedCrossRefGoogle Scholar
  46. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am J Med Sci 105:488–511CrossRefGoogle Scholar
  47. Collins FG, Skibba JL (1979) Effect of hyperthermia and mechlorethamine and hepatic function in isolated perfused liver. Proc Am Assoc Cancer Res 20:125Google Scholar
  48. Collins FG, Skibba JL (1983) Altered hepatic functions and microsomal activity in perfused rat liver by hyperthermia combined with alkylating agents. Cancer Biochem Biophys 6:205–211PubMedGoogle Scholar
  49. Collins FG, Mitros FA, Skibba JL (1980) Effect of palmitate on hepatic biosynthetic functions at hyperthermic temperatures. Metabolism 29:524–531PubMedCrossRefGoogle Scholar
  50. Connor WG, Gerner EW, Miller RC, Boone MLM (1977) Prospects for hyperthermia in human cancer therapy: part II. Radiology 123:497–503PubMedGoogle Scholar
  51. Corry PM, Robinson S, Getz S (1977) Hyperthermic effects on DNA repair mechanisms. Radiology 123:475–482PubMedGoogle Scholar
  52. Coss RA, Dewey WC (1988) Heat sensitization of G 1 and S phase cells by procaine HCl. II. Toxicity and probability of dividing following treatment. Int J Hyperthermia 4:687–697PubMedCrossRefGoogle Scholar
  53. Coss RA, Dewey WC, Bamburg JR (1982) Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res 42:1059–1071PubMedGoogle Scholar
  54. Cress AE, Culver PS, Moon ThE, Gerner EW (1982) Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in cultures. Cancer Res 42:1716–1721PubMedGoogle Scholar
  55. Crile G (1962) Selective destruction of cancers after exposure to heat. Ann Surg 156:404–407PubMedCrossRefGoogle Scholar
  56. Crile G (1963) The effects of heat and radiation on cancers implanted into the feet of mice. Cancer Res 23:372–380PubMedGoogle Scholar
  57. Dahl O (1982) Interaction of hyperthermia and doxorubicin on malignant neurogenic rat cell line in (3T4C) in culture. In: Dethlefsen LA, Dewey WC (eds) 3rd international symposium: cancer therapy by hyperthermia, drugs and radiation. NCI Monogr. 61:251–253Google Scholar
  58. Dahl O (1983) Hyperthermic potentiation of doxorubicin and 4-epi-doxorubicin in a transplantable neurogenic rat tumor (BT4A) in BD IX rats. Int J Radiat Oncol Biol Phys 9:203–207PubMedGoogle Scholar
  59. Dahl O, Mella O (1982) Enhanced effect of combined hyperthermia and chemotherapy (Bleomycin, BCNU) in a neurogenic rat tumor (BT4A) in vivo. Anticancer Res 2:359–364PubMedGoogle Scholar
  60. Dahl O, Mella O (1983) Effect of timing and sequence of hyperthermia and cylophosphamide on a neurogenic rat tumor (BT4A) in vivo. Cancer 52:983–987PubMedCrossRefGoogle Scholar
  61. Dahl O, Mella O (1984) Timing and sequence of hyperthermia and drugs. In: Hyperthermic oncology 1984, vol 1. Proceedings of the 4th international symposium on hyperthermic oncology, Aarhus, 2–6 July 1984, pp 425–438Google Scholar
  62. Daly JM, Smith G, Frazier H, Dudrick SJ, Copeland, EM (1982) Effects of systemic hyperthermia and intrahepatic infusion with 5-fluorouracil. Cancer 49:1112–1115PubMedCrossRefGoogle Scholar
  63. Dennis WH, Yatvin MB (1981) Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J Radiat Biol 39:265–271CrossRefGoogle Scholar
  64. Dertinger H, Jung H (1970) Molekulare Strahlenbiologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  65. DeSilva V, Tofilon PJ, Gutin PH, Dewey WC, Buckley N, Deen DF (1985) Comparative study of the effects of hyperthermia and BCNU on BCNU-sensitive and BCNU-resistant 9L rat brain tumor cells. Radiat Res 103:363–372CrossRefGoogle Scholar
  66. Dethlefsen LA, Dewey WC (1982) Third international symposium: cancer therapy by hyperthermia, drugs, and radiation. N C I Monogr 61Google Scholar
  67. Dewey WC (1984) Interaction of heat with radiation and chemotherapy. Cancer Res [Suppl] 44:4714s-4720sPubMedGoogle Scholar
  68. Dewey WC (1988) Hyperthermic effects studied in vitro. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research. Taylor and Francis, London, pp 954–959Google Scholar
  69. Dewey WC, Esch JL (1982) Transient thermal tolerance: cell killing and polymerase activities. Radiat Res 92:611–614PubMedCrossRefGoogle Scholar
  70. Dewey WC, Holohan EV (1984) Hyperthermia — basic biology. In: Rosenblum ML, Wilson CB (eds) Progress in experimental tumor research: brain tumor therapy, vol 28. Karger Medical and Scientific, Basel, pp 198–219Google Scholar
  71. Dewey WC, Lix LC (1988) Cell-cycle effects: killing division delay and chromosomal aberrations. In: 5th international symposium on hyperthermic oncology, Kyoto, p 20 (abstracts)Google Scholar
  72. Dewey WC, Westra A, Miller HH (1971) Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol 20:505–520CrossRefGoogle Scholar
  73. Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123:464–477Google Scholar
  74. Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123: 497–503Google Scholar
  75. Dewey WC, Sapareto SA, Betten DA (1978) Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiat Res 76:48–59PubMedCrossRefGoogle Scholar
  76. Dewey WC, Freeman ML, Raaphorst GP, Clark EP, Wong RSL, Highfield DP, Spiro IJ, Tomasovic SP, Denman DL, Coss RA (1979) Cell biology of hyperthermia and radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Williams and Wilkins, BaltimoreGoogle Scholar
  77. Dewey WC, Freeman ML, Raaphorst GP, Clark EP, Wong RS, Highfield DP, Spiro JS, Tomasovic SP, Denman DL, Coss RA (1980) Cell biology of hyperthermia and radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 589–623Google Scholar
  78. Dewhirst MW, Sim DA, Sapareto S, Connor WG (1984) Importance of minimum tumor temperature in determining early and long-term responses of camine and fehine tumors to heat and radiation. Cancer Res 44:43–50PubMedGoogle Scholar
  79. Dickson J, Calderwood SK (1979) Effect of hyperglycemia and hyperthermia on the pH, glycolysis and respiration of the Yoshida sarcoma in vivo. J N C I 63:1371–1381Google Scholar
  80. Dietzel F (1975) Tumor and temperature. Urban and Schwarzenberg, MünchenGoogle Scholar
  81. Dikomey E (1978) Repair of DNA strand breaks in Chinese hamster ovary cells at 37 degrees or at 42 degrees C. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the second international symposium, Essen, June 2–4 1977. Urban and Schwarzenberg, Munich, pp 146–149Google Scholar
  82. Dikomey E (1982) Effect of hyperthermia at 42 °C and 45 °C on repair of radiation-induced DNA strand breaks in CHO cells. Int J Radiat Biol 41:603–614CrossRefGoogle Scholar
  83. Dikomey E, Franzke J (1986) Three classes of DNA strand breaks induced by X-irradiation and internal β-rays. Int J Radiat Biol 50:893–908CrossRefGoogle Scholar
  84. Dikomey E, Jung H (1988) Correlation between polymerase ß activity and thermal radiosensitization in CHO cells. Recent Results Cancer Res 109:35–41PubMedGoogle Scholar
  85. Dube DK, Seal G, Loeb LA (1977) Differential heat sensitivity of mammalian DNA polymerase. Biochem Biophys Res Commun 76:483–487CrossRefGoogle Scholar
  86. Durand RE (1978) Potentiation of radiation lethality by hyperthermia in a tumor model: effects of sequence, degree and duration of heating. Int J Radiat Oncol Biol Phys 4:401–406PubMedGoogle Scholar
  87. Eickhoff J, Dikomey E (1984) Development and decay of acutely induced thermotolerance in CHO cells by different heat shocks at various external pH values. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 91–94Google Scholar
  88. Elkind MM, Sutton H, Moses WB (1967) Sublethal and lethal radiation damage. Nature 214:1088–1092PubMedCrossRefGoogle Scholar
  89. Emami B, Mittal BM, Sapareto S (1984) Sequencing of the total course of hyperthermia and radiation. Cancer Res 44(Suppl.):4731s-4732sPubMedGoogle Scholar
  90. Engelhardt R (1987) Hyperthermia and drugs. Recent Results Cancer Res 104:136–203PubMedGoogle Scholar
  91. Evanochko WT, Ng TC, Lilly MB, Lawson AJ, Corbett TH, Durant JR, Glickson JD (1983) In vivo 31P NMR study of the metabolism of murine mammary 16/C adenocarcinoma and its response to chemotherapy, X-radiation, and hyperthermia. Biochemistry 80:334–338Google Scholar
  92. Fajardo LF (1984) Pathological effects of hyperthermia in normal tissues. Cancer Res [Suppl] 44:4826s-4835sPubMedGoogle Scholar
  93. Field SB (1978) The response of normal tissue to hyperthermia alone or in combination with X-rays. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson E, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the second international symposium, Essen, June 2–4, 1977. Urban and Schwarzenberg, Baltimore, pp 37–48Google Scholar
  94. Field SB, Hume SP (1988) Hyperthermia in animals. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research, vol 2. Taylor and Francis, London, pp 960–965Google Scholar
  95. Field SB, Hume S, Law MP, Morris C, Meyers R (1976) Some effects of combined hyperthermia and ionizing radiation on normal tissues. In: Proceedings of the international symposium on radiobiology research needed for the improvement of radiotherapy. International Atomic Energy Commission, ViennaGoogle Scholar
  96. Francesconi R, Mayer M (1979) Heat- and excercise-induced hyperthermia: effects on high-energy phosphate. Aviat. Space Environ Med 50:799–802PubMedGoogle Scholar
  97. Frankel HM, Ferrante FL (1966) Effects of pCO2 on appearance of increased lactate during hyperthermia. Am J Physiol 210:1269–1272PubMedGoogle Scholar
  98. Frascella D, Frankel HM (1969) Liver pyridine nucleotides, lactate, and pyruvate in hyperthermic rats. Am J Physiol 217:207–209PubMedGoogle Scholar
  99. Freeman ML, Dewey WC, Hopwood LE (1977) Effect of pH on hyperthermic cell survival. J N C I 58:1837–1839Google Scholar
  100. George KC, Hirst DG, McNally NJ (1977) Effect of hyperthermia on cytotoxicity of the radiosensitizer Ro-07–0582 in a solid mouse tumor. Br J Cancer 35:372–375PubMedCrossRefGoogle Scholar
  101. George KC, Singh BB (1982) Synergism of chloropromazine and hyperthermia in two mouse solid tumours. Br J Cancer 45:309–313PubMedCrossRefGoogle Scholar
  102. George KC, Singh BB (1985) Hyperthermic response of a mouse fibrosarcoma as modified by phenothiazine drug. Br J Cancer 51:737–738PubMedCrossRefGoogle Scholar
  103. George KC, van Beuningen D, Streffer C (1988) Growth cell proliferation and morphological alterations of mouse mammary carcinoma after exposure to X-rays and hyperthermia. In: Issels RD, Wilmanns W (eds) Application of hyperthermia in the treatment of cancer. Springer, Berlin Heidelberg New York, pp 113–117 (Recent results cancer res, vol 107)Google Scholar
  104. George KC, Streffer C, Pelzer T (1989) Combined effects of X-rays, Ro-03–8799 and hyperthermia on growth, necrosis and cell proliferation in a mouse tumour. Int J Radiat Oncol Biol Phys 16:1119–1122PubMedCrossRefGoogle Scholar
  105. Gerner EW (1983) Thermotolerance. In: Storm FK (ed) Hyperthermia and cancer therapy. Hall, Boston, pp 141–162Google Scholar
  106. Gerner EW (1985 a) Definition of thermal dose. In: Overgaard J (ed) Hyperthermic oncology vol II. Taylor and Francis, London, pp 245–251Google Scholar
  107. Gerner EW (1985 b) Biological isoeffect relationships and dose for temperature induced cytotoxicity. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 253–262Google Scholar
  108. Gerner EW, Leith JT (1977) Interaction of hyperthermia with radiation of different linear energy transfer. Int J Radiat Biol 31:238–288CrossRefGoogle Scholar
  109. Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature 256:500–502PubMedCrossRefGoogle Scholar
  110. Gerner EW, Connor WG, Boone MLM, Doss JD, Mayer EG, Miller RG (1975) The potential of localized heating as an adjunct to radiation therapy. Radiology 116:433–489PubMedGoogle Scholar
  111. Gerner EW, Leith JT, Boone MLM (1976) Mammalian cell survival response following irradiation with 4 MeV X-rays or accelerated helium ions combined with hyperthermia. Radiology 119:715–720PubMedGoogle Scholar
  112. Gerner EW, Holmes PW, McCullough JA (1979) Influence of growth state on several thermal response of EMT-6/Az tumor cells in vitro. Cancer Res 39:981–986PubMedGoogle Scholar
  113. Gerweck LE (1977) Modification of cell lethality at elevated temperatures: the pH effect. Radiat-Res 70:224–235PubMedCrossRefGoogle Scholar
  114. Gerweck LE (1978) Influence of microenvironmental condition on sensitivity to hyperthermia or radiation for cancer therapy. In: Caldwell W, Durand R (eds) Proceedings of the symposium on clinical prospects of hypoxic cell sensitizers and hyperthermia. University of Wisconsin, MadisonGoogle Scholar
  115. Gerweck LE (1982) Effect of microenvironmental factors on the response of cells to single and fractionated heat treatments. N C I Monogr 61:19–25Google Scholar
  116. Gerweck LE (1985) Environmental and vascular effect. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 253–262Google Scholar
  117. Gerweck LE, Bascomb F (1982) Influence of hypoxia on the development of thermotolerance. Radiat Res 90:356–361PubMedCrossRefGoogle Scholar
  118. Gerweck LE, Delaney TF (1984) Persistence of thermotolerance in slowly proliferating plateau phase cells. Radiat Res 97:365–372PubMedCrossRefGoogle Scholar
  119. Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41:845–849PubMedGoogle Scholar
  120. Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39:966–972PubMedGoogle Scholar
  121. Gerweck LE, Richards B, Michaels HB (1982) Influence of low pH on the development and decay of 42°C thermotolerance in CHO cells. Int J of Radiat Oncol Biol Phys 8:1935–1941CrossRefGoogle Scholar
  122. Gilette EL (1985) Experimental studies of tumor response to hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 9–40Google Scholar
  123. Giovanella BC (1983) Thermosensitivity of neoplastic cells in vitro. In: Storm FK (ed) Hyperthermia and cancer therapy. Hall, Boston, pp 55–62Google Scholar
  124. Giovanella BC, Morgan AC, Stehlin JA, Williams LJ (1973) Selective lethal effect of supranormal temperatures on mouse sarcoma cells. Cancer Res 33:2568–2578PubMedGoogle Scholar
  125. Giovanella BC, Stehlin JS, Morgan AC (1976) Selective lethal effects of supranormal temperatures on human neoplastic cells. Cancer Res 36:3944–3950PubMedGoogle Scholar
  126. Goetze O, Schmidt KH (1931) Örtliche homogene Überwärmung gesunder und kranker Gliedmaßen. Deutsche Z Chir 234:623–670CrossRefGoogle Scholar
  127. Goldin EM, Leeper DB (1981) The effect of low pH on thermotolerance induction using fractionated 45°C hyperthermia. Radiat Res 85:472–479PubMedCrossRefGoogle Scholar
  128. Goss P, Parsons PG (1977) The effect of hyperthermia and melphalan on survival of human fibroblast strains and melanoma cells lines. Cancer Res 37:152–156PubMedGoogle Scholar
  129. Guffy MM, Rosenberger JA, Simon J, Burns CP (1982) Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells. Cancer Res 42:3625–3630PubMedGoogle Scholar
  130. Guy AW, Chou Ch-K (1983) Physical aspects of localized heating by radiowaves and microwaves. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 279–304Google Scholar
  131. Haas GP, Klugo R, Hetzel FW, Barton EE, Cerny IC (1984) The synergistic effect of hyperthermia and chemotherapy on murine transitional cell carcinoma. J Urol 132:828–833PubMedGoogle Scholar
  132. Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammlian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34:3117–3123PubMedGoogle Scholar
  133. Hahn GM (1978) Interactions of drugs and hyperthermia in vitro and in vivo. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott KR (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 72–79Google Scholar
  134. Hahn GM (1979) Potential for therapy of drugs and hyperthermia. Cancer Res 39:2264–2268PubMedGoogle Scholar
  135. Hahn GM (1980) Comparison of the malignant potential of 10T1/2 cells and transformants with their survival responses to hyperthermia and to amphotericin B. Cancer Res 40:3763–3767PubMedGoogle Scholar
  136. Hahn GM (1982) Hyperthermia and cancer. Plenum, New YorkGoogle Scholar
  137. Hahn GM, Shiu EC (1983) Effect of pH and elevated temperature on the cytotoxicity of some chemotherapeutic agents on Chinese hamster cells in vitro. Cancer Res 43:5789–5791PubMedGoogle Scholar
  138. Hahn GM, Shiu EC (1986) Adaptation to low pH modifies thermal and thermo-chemical response of mammalian cells. Int J Hyperthermia 2:379–387PubMedCrossRefGoogle Scholar
  139. Hahn GM, Strande DP (1976) Cytotoxic effects of hyperthermia and adriamycin on Chinese hamster cells. J N C I 57:1063–1067Google Scholar
  140. Hahn GM, Braun J, Har-Kedar I (1975) Thermochemotherapy: synergism between hyperthermia (42°-43 °C) and adriamycin (or bleomycin) in mammalian cell inactivation (cancer chemotherapy/cell membranes). Proc Natl Acad Sci USA 72:937–940PubMedCrossRefGoogle Scholar
  141. Hall E (1978) Radiobiology for the radiologist. Harper and Row, HagestownGoogle Scholar
  142. Hand JW (1987) Heat delivery and thermometry in clinical hyperthermia. In: Streffer C (ed) Hyperthermia and the therapy of malignant tumors. Springer, Berlin Heidelberg New York, pp 1–23 (Recent results cancer research, vol 104)Google Scholar
  143. Hand JW, Walker H, Hornsey S, Field SB (1979) Effect of hyperthermia on the mouse testis and its response to X-rays, as assayed by weight loss. Int J Radiat Biol 35:521–528CrossRefGoogle Scholar
  144. Harisiadis L, Hall EJ, Kraljevic U, Borek C (1975) Hyperthermia: biological studies at the cellular level. Radiology 117:447–452PubMedGoogle Scholar
  145. Harris M (1967) Temperature-resistant variants in clonal populations of pig kidney cells. Exp Cell Res 46:301–314PubMedCrossRefGoogle Scholar
  146. Harris M (1969) Growth and survival of mammalian cells under continuous thermal stress. Exp Cell Res 56:382–386PubMedCrossRefGoogle Scholar
  147. Harris AB, Erickson L, Kending JH, Mingrino S, Goldring S (1962) Observations on selective brain heating in dogs. J Neurosurg 19:514–521PubMedCrossRefGoogle Scholar
  148. Hassanzadeh M, Chapman IV (1983) Thermal enhancement of bleomycin-induced tumor growth delay: the effect of dose fractionation. Eur J Cancer Clin Oncol 19:1517–1519PubMedCrossRefGoogle Scholar
  149. Havemann J (1983 a) Influence of a prior heat treatment on the enhancement by hyperthermia of X-ray-induced inactivation of cultured mammalian cells. Int J Radiat Biol 43:267–280CrossRefGoogle Scholar
  150. Havemann J (1983 b) Influence of pH and thermotolerance on the enhancement of X-ray induced inactivation of cultured mammalian cells by hyperthermia. Int J Radiat Biol 43:281–289CrossRefGoogle Scholar
  151. Havemann J, Hahn GM (1981) The role of energy in hyperther-mia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation. J Cell Physiol 107:237–241CrossRefGoogle Scholar
  152. Hayat H, Friedberg I (1986) Heat-induced alterations in cell membrane permeability and cell inactivation of transformed mouse fibroblasts. Int J Hyperthermia 2:369–378PubMedCrossRefGoogle Scholar
  153. Hazan G, Ben-Hur E, Yerushalmi A (1981) Synergism between hyperthermia and cyclophosphamide in vivo: the effect of dose fractionation. Eur J Cancer 17:681–684PubMedCrossRefGoogle Scholar
  154. Hazan G, Lurie H, Yerushalmi A (1984) Sensitization of combined cis-platinum and cyclophosphamide by local hyperthermia in mice bearing the Lewis lung carcinoma. Oncology 41:68–69PubMedCrossRefGoogle Scholar
  155. Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:187–190PubMedCrossRefGoogle Scholar
  156. Hengstebeck S (1983) Untersuchungen zum Intermedialerstoff-wechsel in der Leber und in einem Adenocarcinom der Maus nach Hyperthermie. Dissertation, Universität-Gesamthochschule EssenGoogle Scholar
  157. Henle KJ (1982) Thermotolerance in the murine jejenum. J N C I 68:1033–1036Google Scholar
  158. Henle KJ (1983) Arrhenius analysis of thermal responses. In: Storm FK (ed) Hyperthermia and cancer therapy. Hall, Boston, pp 47–53Google Scholar
  159. Henle KJ, Dethlefsen LA (1980) Time-temperature relationships for heat-induced cell killing of mammalian cells. Ann N Y Acad Sci 335:234–253PubMedCrossRefGoogle Scholar
  160. Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat Res 66:505–518PubMedCrossRefGoogle Scholar
  161. Henle KJ, Leeper DB (1979) Effects of hyperthermia (45 °C) on macromolecular synthesis in Chinese hamster ovary cells. Cancer Res 39:2665–2674PubMedGoogle Scholar
  162. Henle KJ, Bitner AF, Dethlefsen LA (1979) Induction of ther-motolerance by multiple heat fractions in Chinese hamster ovary cells. Cancer Res 39:2486–2491PubMedGoogle Scholar
  163. Henle KJ, Peck JW, Higashikubo R (1983) Protection against heat-induced cell killing in polyols in vitro Cancer Res 43:1624–1627PubMedGoogle Scholar
  164. Henle KJ, Nagle WA, Moss AJ, Herman TS (1984) Cellular ATP content of heated Chinese hamster ovary cells. Radiat Res 97:630–633PubMedCrossRefGoogle Scholar
  165. Henriques FC Jr (1947) Studies on thermal injury. Arch Pathol 43:489–502Google Scholar
  166. Herman TS, Cress AE, Sweets C, Gerner EW (1981) Reversal of resistance to methotrexate by hyperthermia in Chinese hamster ovary cells. Cancer Res 41:3840–3843PubMedGoogle Scholar
  167. Herman TS, Sweets CC, White DM, Gerner EW (1982) Effect of rate of heating on lethality due to hyperthermia and selected chemotherapeutic drugs. J N C I 68:487–492Google Scholar
  168. Hill SA, Denekamp J (1979) The response of six mouse tumours to heat and X-rays: Implications for therapy. Brit J Radiol 52:209–218PubMedCrossRefGoogle Scholar
  169. Hinkelbein W, Menger D, Birmelin M, Engelhardt R (1984) The influence of whole-body hyperthermia on myelotoxicity of doxorubicin and irradiation in rats. In: Proceedings of the 4th international symposium on hyperthermic oncology, vol 1. Aarhus, 2–6 July 1984, pp 281–283Google Scholar
  170. Hiramoto R, Ghanta VK, Lilly MB (1984) Reduction of tumor burden in a murine osteosarcoma following hyperthermia combined with cyclophosphamide. Cancer Res 44: 1405–1408PubMedGoogle Scholar
  171. Holohan EV, Highfield DP, Dewey WC (1982) Induction during G of heat radiosensitization in Chinese hamster ovary cells following single and fractionated heat doses. NCI Monogr 61:123–125Google Scholar
  172. Holohan EV, Highfield DP, Holohan PK, Dewey WC (1984) Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance. Radiat Res 97:108–131CrossRefGoogle Scholar
  173. Honess DJ, Bleehen NM (1982) Sensitivity of normal mouse marrow and RIF-1 tumor to hyperthermia combined with cyclophosphamide or BCNU: a lack of therapeutic gain. Br J Cancer 46:236–248PubMedCrossRefGoogle Scholar
  174. Hones DJ, Bleehen NM (1985) Potentiation of melphalan by systemic hyperthermia in mice: therapeutic gain for mouse lung microtumours. Int J Hyperthermia 1:57–68CrossRefGoogle Scholar
  175. Honesss DJ, Donaldson J, Workman P, Bleehen NM (1985) The effect of systematic hyperthermia on melphalan pharmacokinetics in mice. Br J Cancer 51:77–84CrossRefGoogle Scholar
  176. Hume SP (1985) Experimental studies of normal tissue response to hyperthermia given alone or combined with radiation. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 53–70Google Scholar
  177. Hume SP, Marigold JCL (1980) Transient, heat induced, thermal resistance in the small intestine of mouse. Radiat Res 82:526–535PubMedCrossRefGoogle Scholar
  178. Hume SP, Myers R (1984) An unexpected effect of hyperthermia in the expression of X-ray damage in mouse skin. Radiat Res 97:186–199PubMedCrossRefGoogle Scholar
  179. Hume SP, Rogers MA, Field SB (1978) Two qualitatively different effects of hyperthermia on acid phosphatase staining in mouse spleen, dependent on the severity of the treatment. Int J Radiat Biol 34:401–409CrossRefGoogle Scholar
  180. Hume SP, Marigold JCL, Field SB (1979) The effects of local hyperthermia on the small intestine of mouse. Br J Radiol 52:657–662PubMedCrossRefGoogle Scholar
  181. Hume SP, Marigold JC, Michalowski A (1983) The effect of local hyperthermia on nonproliferative, compared with proliferative, epithelial cells of the mouse intestinal mucosa. Radiat Res 94:252–262PubMedCrossRefGoogle Scholar
  182. Hume SP, Marigold JCA, Manjil LG (1988) Thermotolerance in preirradiated intestine and its influence on time-temperature relationships. Radiat Res 113:375–387PubMedCrossRefGoogle Scholar
  183. Isbruch Ch (1986) Untersuchungen zum Glukosestoffwechsel menschlicher Melanomzellen in vitro nach Hyperthermie, Bestrahlung und Glukosegabe. Dissertation, Universität-Gesamthochschule EssenGoogle Scholar
  184. Issa M (1985) Hyperthermie am Dünndarm der Maus. Eine elektronenmikroskopische Untersuchung. Dissertation, Essen.Google Scholar
  185. Jackson DJ, Dickson JA (1979) Combination of hyperthermia (42 °C) and hyperglycemia in the treatment of the MC7 sarcoma. Br J Cancer 40:306Google Scholar
  186. Jähde E, Rajewsky MF (1982) Sensitization of clonogenic malignant cells to hyperthermia by glucose-mediated, tumour-selective pH reduction. J Cancer Res Clin Oncol 104:23–30PubMedCrossRefGoogle Scholar
  187. Jain RK (1983) Bioheat transfer: mathematical models of thermal systems. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston pp 9–46Google Scholar
  188. Johnson HA, Pavelec M (1973) Thermal enhancement of thio-TEPA cytotoxicity. J N C I 50:903–908Google Scholar
  189. Johnson FH, Eyring H, Polisar MJ (1954) The kinetic basis of molecular biology. Wiley, New YorkGoogle Scholar
  190. Jorritsma JBM, Konings AWT (1983) Inhibition of radiation-induced strand breaks by hyperthermia and its relationship to cell survival after hyperthermia alone. Int J Radiat Biol 43:505–516CrossRefGoogle Scholar
  191. Jorritsma JBM, Konings AWT (1984) The occurrence of DNA strand breaks after hyperthermic treatments of mammalian cells with and without radiation. Radiat Res 98:198–208PubMedCrossRefGoogle Scholar
  192. Jorritsma JBM, Konings AWT (1986) DNA lesions in hyperthermic cell killing: effects of thermotolerance, procaine and erythritol. Radiat Res 106:89–97PubMedCrossRefGoogle Scholar
  193. Jorritsma JBM, Kampinga HH, Konings AWT (1984) Role of DNA polymerase in the mechanisms of damage by heat and heat plus radiation in mammalian cells. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 61–64Google Scholar
  194. Jorritsma JBM, Kampinga HH, Saf AHJ, Konings AWT (1985) Strand break repair, DNA polymerase and heat radiosensitization in thermotolerant cells. Int J Hyperthermia 1:131–145PubMedCrossRefGoogle Scholar
  195. Jorritsma JBM, Burgman P, Kampinga HH, Konings AWT (1986) DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments. Radiat Res 105:307–319PubMedCrossRefGoogle Scholar
  196. Joshi DS, Barendsen GW (1984) Hyperthermic modification of drug effectiveness for reproductive death of cultured mammalian cells. Indian J Exp Biol 22:251–254PubMedGoogle Scholar
  197. Joshi DS, Jung H (1979) Thermotolerance and sensitization induced in CHO cells by fractionated hyperthermic treatments at 38°-45°C. Eur J Cancer 15:345–350PubMedCrossRefGoogle Scholar
  198. Jung H (1982) Interaction of thermotolerance and thermosen-sitization induced in CHO cells by combined hyperthermic treatments at 40° and 43°C. Radiat Res 91:433–446PubMedCrossRefGoogle Scholar
  199. Jung H (1986) A generalized concept for cell killing by heat. Radiat Res 106:56–72PubMedCrossRefGoogle Scholar
  200. Jung H, Dikomey E (1988) Some basic effects in cellular ther-mobiology. Rec Results Cancer Res 107:104–112Google Scholar
  201. Jung H, Kölling H (1980) Induction of thermotolerance and sensitization in CHO cells by combined hyperthermic treatments at 40° and 43°C. Eur J Cancer 16:1523–1528PubMedCrossRefGoogle Scholar
  202. Jung H, Dikomey E, Zywitz F (1986) Ausmaß und zeitliche Entwicklung der Thermotoleranz und deren Einfluß auf die Strahlenempfindlichkeit von soliden Transplantationstumoren. In: Streffer C, Herbst M, Schwabe H (eds) Lokale Hyperthermie. Deutscher Ärzte Verlag, Köln, pp 23–38Google Scholar
  203. Kachani ZFC, Sabin AB (1969) Reproductive capacity and viability at higher temperatures of various transformed hamster cell lines. J N C I 43:469–480Google Scholar
  204. Kal HB, Hahn GM (1976) Kinetic responses of murine sarcoma cells to radiation and hyperthermia in vivo and in vitro. Cancer Res 36:1923–1929PubMedGoogle Scholar
  205. Kal HB, Hatfield M, Hahn GM (1975) Cell cycle progression of murine sarcoma cells after X-irradiation or heat shock. Radiology 117:215–217PubMedGoogle Scholar
  206. Kampinga HH, Jorritsma JBM, Konings AWT (1985) Heat-induced alterations in DNA polymerase activity of HeLa cells and of isolated nuclei. Relation to cell survival. Int J Radiat Biol 47:29–40CrossRefGoogle Scholar
  207. Kampinga HH, Luppes JG, Konings AWT (1987) Heat-induced nuclear protein binding and its relation to thermal cytotoxicity. Int J Hyperthermia 3:459–465PubMedCrossRefGoogle Scholar
  208. Kano E, Furukawa M, Yoshikawa S, Tsubouchi S, Kondo T, Sugahara T (1984) Hyperthermic chemopotentiation and chemical thermosensitisation. In: Hyperthermic oncology 1984, vol 1, summary papers. Proceedings of the 4th international symposium on hyperthermic oncology, Aarhus, 2–6 July 1984, pp 437–440Google Scholar
  209. Kapp DA, Hahn GM (1979) Thermosensitization by sulfhydryl compounds of exponentially growing Chinese hamster cells. Cancer Res 39:4630–4635PubMedGoogle Scholar
  210. Kase K, Hahn GM (1975) Differential heat response of normal and transformed human cells in tissue culture. Nature 255:228–230PubMedCrossRefGoogle Scholar
  211. Kellerer AM, Rossi HH (1971) RBE and the primary mechanism of radiation action. Radiat Res 47:15–34PubMedCrossRefGoogle Scholar
  212. Kiefer J, Kraft-Weyrather W, Hlawica M (1976) Cellular radiation effects and hyperthermia influence of exposure temperature on survival of diploid yeast irradiated under oxygenated and hypoxic conditions. Int J Radiat Biol 30:293–300CrossRefGoogle Scholar
  213. Kim SH, Kim JH, Hahn EW (1975 a) The radiosensitization of hypoxic tumor cells by hyperthermia. Radiology 114:727–728PubMedGoogle Scholar
  214. Kim SH, Kim JH, Hahn EW (1975 b) Enhanced killing of hypoxic tumor cells by hyperthermia. Br J Radiol 48:872–874PubMedCrossRefGoogle Scholar
  215. Kim SH, Kim JH, Hahn EW (1976) The enhanced killing of irradiated HeLa cells in synchronous culture by hyperthermia. Radiat Res 66:337–345PubMedCrossRefGoogle Scholar
  216. Kim SH, Kim JH, Hahn EW (1978) Selective potentiation of hyperthermia killing of hypoxic cells by 5-thin-D-glucose. Cancer Res 38:2935–2938PubMedGoogle Scholar
  217. Kim SH, Kim JH, Hahn EW, Ensign NA (1980) Selective killing of glucose and oxygen-deprived HeLa cells by hyperthermia. Cancer Res 40:3459–3462PubMedGoogle Scholar
  218. Kim JH, Kim SH, Alfieri A, Young CW (1984) Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res 44:102–106PubMedGoogle Scholar
  219. Klein ME, Frayer K, Bachur NR (1977) Hyperthermic enhancement of chemotherapeutic agents in L1210 leukemia. Bood 505:223Google Scholar
  220. Konings AWT (1987) Effects of heat and radiation on mammalian cells. Radiat Physiol Chem 30:339–349Google Scholar
  221. Konings AWT, Penninga P (1983) Role of reduced glutathione in cellular heat sensitivity and thermotolerance. Strahlentherapie 159:377–378Google Scholar
  222. Konings AWT, Penninga P (1984) Role of reduced glutathione protein thiols, and pentose phosphate pathway in heat sensitivity and thermotolerance. In: Overgaard J (ed) Proceedings of the 4th international symposium on hyperthermia oncology, 2–6 July, Aarhus. Taylor and Francis, London, pp 115–118Google Scholar
  223. Konings AWT, Penninga P (1985) On the importance of the level of glutathione and the activity of the pentose phosphate pathway in heat sensitivity and thermotolerance. Int J Radiat Biol 48:409–422CrossRefGoogle Scholar
  224. Konings AWT, Ruifrok ACC (1985) Role of membrane lipids and membrane fluidity and thermotolerance of mammalian cells. Radiat Res 102:86–98PubMedCrossRefGoogle Scholar
  225. Kubota Y, Nishimura R, Takai S, Umeda M (1979) Effect of hyperthermia on DNA single-strand breaks induced by bleomycin in HeLa cells. Jpn J Cancer Res 70:681–685Google Scholar
  226. Kura Sh, Antoku Sh (1985) Time-lapse photographic studies of heated HeLa cells. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in cancer therapy. Nippon Hoshasen Kiki Kogyokai, Tokyo, pp 192–193Google Scholar
  227. Lambert RA (1912) Demonstration of the greater susceptibility to heat of sarcoma cells. JAMA 59:2147–2148Google Scholar
  228. Landry J, Chretien P (1983) Relationship between hyperthermia induced heat shock proteins and thermotolerance in Morris hepatoma cells. Can J Biochem Cell Biol 61:428–437PubMedCrossRefGoogle Scholar
  229. Landry J, Marceau N (1978) Rate-limiting events in hyperthermic cells killing. Radiat Res 75:573–578PubMedCrossRefGoogle Scholar
  230. Lange I, Zänker KS, Siewert JR, Bliimel G, Eisler K, Kolb E (1984) The effect of whole body hyperthermia on 5-fluorouracil pharmakokinetics in vivo and clonogenicity of mammalian colon cancer cells. Anticancer Res 4:27–32PubMedGoogle Scholar
  231. Langendorff H, Langendorff M (1943) Über die Wirkung einer mit Ultrakurzwelle kombinierte Röntgenbehandlung auf das Ehrlich-Karzinom der Maus. Strahlentherapie 72:211–219Google Scholar
  232. Langer M, Weidenmaier W, Röttinger EM (1982) Increased cytotoxicity of misonidazole by pH reduction and 41 °C hyperthermia in Chinese hamster cells. Strahlentherapie 158:688–691PubMedGoogle Scholar
  233. Laszlo A (1988) Evidence for two states of thermotolerance in mammalian cells. Int J Hyperthermia 4:513–526PubMedCrossRefGoogle Scholar
  234. Law MP, Ahier RG (1982) Long-term thermal sensitivity of previously irradiated skin. Br J Radiol 55:913–915PubMedCrossRefGoogle Scholar
  235. Law MP, Ahier RG, Field SB (1978) The response of the mouse ear to heat applied alone or combined with X-rays. Br J Radiol 51:132–138PubMedCrossRefGoogle Scholar
  236. Law MP, Ahier RG, Field SB (1979) The effect of prior heat treatment on the thermal enhancement of radiation damage in the mouse ear. Br J Radiol 52:315–321PubMedCrossRefGoogle Scholar
  237. Law MP, Ahier RG, Somaia S (1987) Thermotolerance induced by fractionated hyperthermia: dependence on the interval between fractions. Int J Hyperthermia 3:433–439PubMedCrossRefGoogle Scholar
  238. Lee SY, Ryn KH, Kang MS, Song CW (1986) Effect of hyperthermia on the lactic acid and beta-hydroxybutyric acid content in tumours. Int J Hyperthermia 2:213–222PubMedCrossRefGoogle Scholar
  239. Leeper DB (1985) Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 9–40Google Scholar
  240. Leith JT, Miller RC, Gerner EW, Brone MLM (1977) Hyperthermic potentiation. Biological aspects and applications to radiation therapy. Cancer 39:766–779PubMedCrossRefGoogle Scholar
  241. Lepock JR (1982) Involvement of membranes in cellular responses to hyperthermia. Radiat Res 92:433–438PubMedCrossRefGoogle Scholar
  242. Lepock JR, Massicotte-Nolan P, Ruled GS, Kruuv J (1981) Lack of correlation between hyperthermic cell killing, thermotolerance, and membrane lipid fluidity. Radiation Res 87:300–313PubMedCrossRefGoogle Scholar
  243. Lepock JR, Cheng KH, Al-Qysi H, Kruüv J (1983) Ther-motropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol 61:421–427PubMedCrossRefGoogle Scholar
  244. Levin W, Blair RM (1978) Clinical experience with combined whole-body hyperthermia and radiation. In: Streffer C, van Beuningen D, Dietzel F, Röttinger F et al. (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 322–325Google Scholar
  245. Li GC (1984) Thermal biology and physiology in clinical hyperthermia: current status and future needs. Cancer Res [Suppl] 44:4886s-4893sGoogle Scholar
  246. Li GC, Hahn GM (1978) Ethanol-induced tolerance to heat and to adriamycin. Nature 274:699–701PubMedCrossRefGoogle Scholar
  247. Li GC, Hahn GM (1980 a) A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Res 40:4501–4508PubMedGoogle Scholar
  248. Li GC, Hahn GM (1980b) Adaptation to different growth temperatures modifies some mammalian cell survival responses. Exp Cell Res 128:475–485PubMedCrossRefGoogle Scholar
  249. Li DJ, Hahn GM (1984) Responses of RIF tumors to heat and drugs: dependence on tumor size. Cancer Treat Rep 68:1149–1151PubMedGoogle Scholar
  250. Li GC, Shiu EC, Hahn GM (1980) Similarities in cellular inactivation by hyperthermia or by ethanol. Radiat Res 82:257–268PubMedCrossRefGoogle Scholar
  251. Li GC, Petersen NS, MitchellHK (1982 a) Induced thermal tolerance and heat shock protein synthesis in Chinese hamster ovary cells. Int J Radiat Oncol Biol Phys 8:63–67PubMedGoogle Scholar
  252. Li GC, Fisher GA, Hahn GM (1982b) Induction of thermotolerance and evidence for a well-defined thermotropic cooperative process. Radiat Res 89:361–368PubMedCrossRefGoogle Scholar
  253. Li GC, Shrieve DC, Werb A (1982 c) Correlations between synthesis of heat-shock proteins and development of tolerance to heat and to Adriamycin and Chinese hamster fibroblasts: heat shock and other inducers. In: Schlesinger MJ, Ashburner J, Tissieres K (eds) Heat shock from bacteria to man. Cold Spring Habor, New YorkGoogle Scholar
  254. Li DJ, Zhou SL, Qui SL, Qiao SJ (1987) Thermodamage, ther-mosensitivity and thermotolerance of normal swine oesophagus. Int J Hyperthermia 3:143–151PubMedCrossRefGoogle Scholar
  255. Li DJ, Qui SL, Zhou SL, Liu HL (1988) Acute heat injury to the normal swine rectum. Int J Hyperthermia 4:191–201PubMedCrossRefGoogle Scholar
  256. Lilly MB, Katholo ChR, Ng TC (1985) Direct relationship between high-energy phosphate content and blood flow in thermally treated murine tumors. J N C I 75:885–889Google Scholar
  257. Lin PS, Turi A, Kwock L, Lu RC (1982) Hyperthermia effect on microtubule organization. NCI Monogr 61:57–60Google Scholar
  258. Lin PS, Cariani PA, Jones M, Kahn PC (1983) Work in progress: the effect of heat on bleomycin cytotoxicity in vitro and on the accumulation of co-bleomycin in heat-treated rat tumors. Radiology 146:213–217PubMedGoogle Scholar
  259. Lokshina AM, Song CW, Rhee JG, Levitt SH (1985) Effect of fractionated heating on the blood flow in normal tissues. Int J Hyperthermia 1:117–129PubMedCrossRefGoogle Scholar
  260. Longo FW, Tomashefsky P, Rivin BD, Tannenbaum M (1983) Intraction of ultrasonic hyperthermia with two alkylating agents in a murine bladder tumor. Cancer Res 43: 3231–3235PubMedGoogle Scholar
  261. Lorenz M, Biwer E, Habs M, Schmähl D (1984) Wirkung der lokalen moderaten Hyperthermie in Kombination mit einer Chemotherapie durch N-nitrose-l,3-bis-(2-chloroethyl)-harnstoff (BCNU) auf das in das Colon descendens der Ratte transplantierte Yoshida-Sarkom. 2. Mitteilung: Monochemot-herapie in Kombination mit nachfolgender Hyperthermie in unterschiedlichen Zeitintervallen. Langenbecks Arch. Chir 362:253–261PubMedCrossRefGoogle Scholar
  262. Loshek DD, Orr JS, Solomonidis E (1977 a) Interaction of hyperthermia and radiation: the survival surface. Br J Radiol 50:893–901PubMedCrossRefGoogle Scholar
  263. Loshek DD, Orr JS, Solomonidis E (1977 b) Interaction of hyperthermia and radiation: temperature coefficient of interaction. Br J Radiol 50:902–907PubMedCrossRefGoogle Scholar
  264. Loshek DD, Orr JS, Solomonidis E (1981) Interaction of hyperthermia and radiation: radiation quality. Br J Radiol 54:40–47PubMedCrossRefGoogle Scholar
  265. Loven DP, Leeper DB, Oberley LW (1985) Superoxide dismutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide. Cancer Res 45:3029–3033PubMedGoogle Scholar
  266. Lücke-Huhle C, Dertinger H (1977) Kinetic response of an in vitro tumor model (V99 spheroids) to 42°C hyperthermia. Eur J Cancer 13:23–28PubMedCrossRefGoogle Scholar
  267. Lunec J, Cresswell SR (1983) Heat-induced thermotolerance expressed in the energy metabolism of mammalian cells. Radiat Res 93:588–597PubMedCrossRefGoogle Scholar
  268. Lunec J, Hesslewood JP, Parker R, Leaper S (1981) Hyperthermic enhancement of radiation cell killing in HeLa S3 cells and its effect on the production and repair of DNA strand breaks. Radiat Res 85:116–125PubMedCrossRefGoogle Scholar
  269. Lyons BE, Obana WG, Borcich JK, Kleinman R, Singh D, Britt RH (1986) Chronic histological effects of ultrasonic hyperthermia on normal feline brain tissue. Radiat Res 106:234–251PubMedCrossRefGoogle Scholar
  270. Magin RL, Weinstein JN (1982) Delivery of drugs in temperature-sensitive liposomes. In: Gregoriadia C, Senior, Trouet L (eds) Targeting of drugs. Plenum, New York, pp 203–221Google Scholar
  271. Magin RL, Siki BI, Cysyk RL (1979) Enhancement of bleomycin activity against Lewis lung tumors in mice by local hyperthermia. Cancer Res 39:3792–3795PubMedGoogle Scholar
  272. Magin RL, Cysyk RL, Litterst CL (1980) Distribution of adriamycin in mice under conditions of local hyperthermia which improve systemic drug therapy. Cancer Treat Rep 64:203–210PubMedGoogle Scholar
  273. Magun BE, Fennie ChW (1981) Effects of hyperthermia on binding, internalization, and degradation of epidermal growth factor. Radiat Res 86:133–146PubMedCrossRefGoogle Scholar
  274. Marmor JB (1979) Interaction of hyperthermia and chemotherapy in animals. Cancer Res 39:2269–2276PubMedGoogle Scholar
  275. Marmor JB, Kozak D, Hahn GM (1979) Effects of systematically administered bleomycin or adriamycin with local hyperthermia on primary tumor and lung metastases. Cancer Treat Rep 63:1311–1325Google Scholar
  276. Martinez A, Fajardo LF, Kernahan P, Prionas S, Hahn GM (1980) The effects of radio frequency heating on normal fat and muscular tissues: histologically based tissue injury grading system. In: Third international symposium: cancer therapy by hyperthermia, drugs and radiation, Fort Collins, June 22–26Google Scholar
  277. Martinez AA, Meshorer A, Meyer JL, Hahn GM, Fajardo LF, Prionas SD (1983) Thermal sensitivity and thermotolerance in normal porcine tissues. Cancer Res 43:2072–2075PubMedGoogle Scholar
  278. Massicotte-Nolan P, Glofcheski DJ, Kruuv J, Lepock JR (1981) Relationship between hyperthermic cell killing and protein denaturation by alcohols. Radiat Res 87:284–299PubMedCrossRefGoogle Scholar
  279. McCormick W, Penman SH (1969) Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol 39:315–333PubMedCrossRefGoogle Scholar
  280. Mehdi SQ, Recktenwald DJ, Smith LM, Li GC, Armour EP, Hahn GM (1984) Effect of hyperthermia on murine cell surface histocompatibility antigens. Cancer Res 44:3394–3397PubMedGoogle Scholar
  281. Mella O (1985) Combined hyperthermia and cis-diam-minedichloroplatinum in BDIX rats with transplanted BT4A tumors. Int J Hyperthermia 1:171–183PubMedCrossRefGoogle Scholar
  282. Meyer KR, Hopwood LE, Gillette EL (1979) The thermal response of mouse adenocarcinoma cells at low pH. Eur J Cancer 15:1219–1222PubMedCrossRefGoogle Scholar
  283. Meyn RE, Corry PM, Fletcher SE, Demetriades M (1980) Thermal enhancement of DNA damage in mammalian cells treated with cis-diamminedichloroplatinum (II). Cancer Res 40:1136–1139PubMedGoogle Scholar
  284. Mikkelsen RB, Wallach DFH (1982) Transmembrane ion gradients and thermochemotherapy. In: Gautherie MA (eds) Biomedical thermology. International symposium, Straßburg 1982. Liss, New York, pp 103–107Google Scholar
  285. Milligan AJ, Metz JA, Leeper DB (1984) Effect of intestinal hyperthermia in the Chinese hamster. Int J Radiat Oncol Biol Phys 10:259–263PubMedCrossRefGoogle Scholar
  286. Mills MD, Meyn RE (1983) Hyperthermic potentiation on unre-joined DNA strand breaks following irradiation. Radiat Res 95:327–338PubMedCrossRefGoogle Scholar
  287. Mirtsch S, Streffer C, van Beuningen D, Rebmann A (1984) ATP metabolism in human melanoma cells after treatment with hyperthermia (42°C) In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 19–22Google Scholar
  288. Mirtsch S, Strohmenger U, Streffer C (1988) Glutathione level in melanoma cells and tissue. Recent Results Cancer Res 107:22–26PubMedGoogle Scholar
  289. Mitchell JB, Russo A, Kinsella TJ, Glatstein E (1983) Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res 43:987–991PubMedGoogle Scholar
  290. Mivechi NF, Dewey WC (1984) Effect of glycerol and low pH on heat-induced cell killing and loss of cellular DNA polymerase activities in Chinese hamster ovary cells. Radiat Res 99:352–362PubMedCrossRefGoogle Scholar
  291. Mizuno S, Ishida A (1981) Potentiation of bleomycin cytotoxicity toward cultured mouse cells by hyperthermia and ethanol. Jpn J Cancer Res 72:395–402Google Scholar
  292. Mizuno S, Amagai M, Ishida A (1980) Synergistic cell killing by antitumor agents and hyperthermia in cultured cells. Jpn J Cancer Res 71:471–478Google Scholar
  293. Mizuno S, Ishida A, Amagai M (1981) Potentiation of the action of antitumor agents by hyperthermia. Gano Kagakuryoho 8 [Suppl]:147–153Google Scholar
  294. Mondovi B, Strom R, Rotilio G et al. (1969 a) The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on cellular respiration. Eur J Cancer 5:129–136PubMedCrossRefGoogle Scholar
  295. Mondovi B, Finazzi-Agro A, Rotilio G, Strom R, Moricca G, Rossi-Fanelli A (1969) The biochemical mechanism of selective heat sensitivity of cancer cells. II. Studies on nucleic acids and protein synthesis. Eur J Cancer 5:137–146PubMedCrossRefGoogle Scholar
  296. Monson TP, Henle KJ, Moss AJ, Nagle WA (1984) Experimental test of the polyol hypothesis: the effect of aldose reductase inhibitors on thermotolerance development and measurements of intracellular sugar and polyol content in ther-motolerant CHO cells. In: Proceedings of the 32nd annual meeting of the Radiation Research Society (abstract). Orlando, Florida, p 62Google Scholar
  297. Morgan JE, Bleehen NM (1981a) Response of EMT6 multicellular tumor spheroids to hyperthermia. Br J Cancer 43:384–391PubMedCrossRefGoogle Scholar
  298. Morgan JE, Bleehen NM (1981b) Interactions between misonidazole and hyperthermia in EMT6 spheroids. Br J Cancer 44:810–818PubMedCrossRefGoogle Scholar
  299. Morgan JE, Honess D, Bleehen NM (1979) The interaction of thermal tolerance with drug cytotoxicity in vitro. Br J Cancer 39:422–428PubMedCrossRefGoogle Scholar
  300. Morris CC, Field SB (1985) The relationship between heating time and temperature for rat tail necrosis with and without occlusion of the blood supply. Int J Radiat Biol 47:41–48CrossRefGoogle Scholar
  301. Morris CC, Myers R, Field SB (1977) The response of the rat tail to hyperthermia. Br J Radiol 50:576PubMedCrossRefGoogle Scholar
  302. Moritz A, Henriques FC (1947) Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23:695–720PubMedGoogle Scholar
  303. Muckle DS, Dickson JA (1973) Hyperthermia (42°C) as an adjuvant to radiotherapy nad chemotherapy in the treatment of the allegeneic VX2 carcinoma in the rabbit. Br J Cancer 27:307–315PubMedCrossRefGoogle Scholar
  304. Murray D, Milas L, Meyn RE (1984) DNA damage produced by combined hyperglycemia and hyperthermia in two mouse fibrosarcoma tumors in vivo. Int J Radiat Oncol Biol Phys 10:1679–1682PubMedCrossRefGoogle Scholar
  305. Murthy MS, Khandekar JD, Travis JD, Scanion EF (1984) Combined effect of hyperthermia (HT) and platinum compounds in vivo and in vitro on murine and human tumor cells. In: Hyperthermic oncology 1984, vol 1. Proceedings of the 4th international symposium on hyperthermic oncology. Aarhus, 2–6 July 1984, pp 421–424Google Scholar
  306. Nagle WA, Moss AJ Jr (1983) Inhibitors of poly (ADP-ribose) synthetase enhance the cytotoxicity of 42 °C and 45 °C hyperthermia in cultured Chinese hamster cells. Int J Radiat Biol 44:475–481CrossRefGoogle Scholar
  307. Nagle WA, Moss AJ, Baker ML (1982) Increased lethality at 42°C for hypoxic Chinese hamster cells heated under conditions of energy depreviation. NCI Monogr 61:107–110Google Scholar
  308. Naruse Sh, Higuchi T, Horikawa Y, Tnaka Ch, Nakamura K, Hirakawa K (1986) Radiofrequency hyperthermia with successive monitoring of its effects on tumors using NMR spectroscopy. Proc Natl Acad Sci USA 83:8343–8347PubMedCrossRefGoogle Scholar
  309. Nauts HC (1985) Hyperthermic oncology: historic aspects and future trends. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 199–209Google Scholar
  310. Neumann HA, Fiebig HH, Löhr GW, Engelhardt R (1985) Effects of cytostatic drugs and 40.5 °C hyperthermia on human clonogenic tumor cells. Eur J Cancer Clin Oncol 21:515–523PubMedCrossRefGoogle Scholar
  311. Nielsen OS (1984) Facitonated hyperthermia and thermotolerance. Danish Medical Bulletin 31:376–390PubMedGoogle Scholar
  312. Nielsen OS, Overgaard J (1982 a) Influence of time and temperature on the kinetics of thermotolerance in LI A2 cells in vitro. Cancer Res 42:4190–4196PubMedGoogle Scholar
  313. Nielsen OS, Overgaard J (1982 b) Importance of preheating temperature and time for the induction of thermotolerance in a solid tumour in vivo. Br J Cancer 46:894–903PubMedCrossRefGoogle Scholar
  314. Ngo FOH, Han A, Utsumi H, Elkind MM (1977) Comparative radiobiology of fast neutrons: relevance to radiotherapy and basic studies. Int J Radiat Oncol Biol Phys 3:187–193PubMedCrossRefGoogle Scholar
  315. Ohnoshi T, Ohnuma T, Beranek JT, Holland JF (1985) Combined cytotoxicity effect of hyperthermia and anthracycline antibiotics on human tumor cells. JNCI 71:275–281Google Scholar
  316. Ohtsuka K, Nakamura W (1986) Modification of the thermal sensitivity of the murine foot and tumor by prior hypoxic treatment. Int J Hyperthermia 2:65–73PubMedCrossRefGoogle Scholar
  317. Ohyama H, Yamada T (1980) Reduction of rat thymocyte interphase death by hyperthermia. Radiat Res 82:342–351PubMedCrossRefGoogle Scholar
  318. Okumura Y, Reinhold H (1978) Heat sensitivity of rat skin. Eur J Cancer 14:1161–1166PubMedCrossRefGoogle Scholar
  319. Omar RA, Lanks KW (1984) Heat shock protein synthesis and cell survival in clones of normal and SV40-transformed mouse embryo cells. Cancer Res 44:3976–3982PubMedGoogle Scholar
  320. Osieka R, Magin RL, Atkinson ER (1978) The effect of hyperthermia on human colon cancer xenografts in nude mice. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 287–290Google Scholar
  321. Ossovski L, Sachs L (1967) Temperature sensitivity of polyoma virus: induction of cellular DNA synthesis and multiplication of transformed cells at high temperatures. Proc Natl Acad Sci USA 58:1938–1945PubMedCrossRefGoogle Scholar
  322. Ostrow S, van Echo D, Egorin M, Whitacre M, Grochow L, Aisner J, Colvin M, Bachur M, Bachur N, Wiernik PH (1982) Cyclophosphamide pharmacokinetics in patients receiving whole-body hyperthermia. NCI Monogr 61: 401–403Google Scholar
  323. Overgaard J (1976 a) Ultrastructure of a murine mammary carcinoma exposed to hyperthermia in vivo. Cancer Res 36: 983–995PubMedGoogle Scholar
  324. Overgaard J (1976 b) Combined adriamycin and hyperthermia treatment of a murine mammary carcinoma in vivo. Cancer Res 36:3077–3081PubMedGoogle Scholar
  325. Overgaard J (1977) Effect of hyperthermia on malignant cells in vivo: a review and hypothesis. Cancer 39:2637–2646PubMedCrossRefGoogle Scholar
  326. Overgaard J (1980) Effect of misonidazole and hyperthermia on the radiosensitivity of a C3H mouse mammary carcinoma and its surrounding normal tissue. Brit J Cancer 41:10–21PubMedCrossRefGoogle Scholar
  327. Overgaard J (1981) Fractionated radiation and hyperthermia. Experimental and clinical studies. Cancer 48:1116–1123PubMedCrossRefGoogle Scholar
  328. Overgaard J (1985 a) History and heritage — an introduction. In: Overgaard J (ed) Hyperthermia oncology. Taylor and Francis, London, pp 3–8Google Scholar
  329. Overgaard J (1985 b) Hyperthermic oncology. Taylor and Francis, LondonGoogle Scholar
  330. Overgaard J, Suit H (1979) Time-temperature relationship in hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res 39:3248–3253PubMedGoogle Scholar
  331. Overgaard K (1934) Über Wärmetherapie bösartiger Tumoren. Acta Radiol. [Then] (Stockh.) 15:89–99CrossRefGoogle Scholar
  332. Overgaard K, Overgaard J (1972) Investigations on the possibility of a thermic tumor therapy: II. Action of combined heat-roentgen treatment on a transplanted mouse mammary carcinoma. Eur J Cancer 8:573–575PubMedCrossRefGoogle Scholar
  333. Overgaard K, Overgaard J (1974) Radiation sensitsitizing effect of heat. Acta Radiol. [Ther.] (Stockh.) 13:501–511Google Scholar
  334. Palzer R, Heidelberger C (1973) Influence of drugs and synchrony on the hyperthermic killing of HeLa cells. Cancer Res 33:422–427PubMedGoogle Scholar
  335. Panniers R, Henshaw EC (1984) Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumor cells. Eur J Biochem 140:209–214PubMedCrossRefGoogle Scholar
  336. Parks LC, Smith GV (1983) Systemic hyperthermia by extracorporal induction: techniques and results. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 407–446Google Scholar
  337. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Applied Physiol 1:93–99Google Scholar
  338. Pettigrew RT, Galt JM, Ludgate CM, Smith AN (1974) Clinical effects of whole-body hyperthermia in advanced malignancy. Br Med J 4:679–682PubMedCrossRefGoogle Scholar
  339. Pincus G, Fischer A (1931) The growth and death of tissue cultures exposed to supranormal temperatures. J Exp Med 54:323–332PubMedCrossRefGoogle Scholar
  340. Pomp H (1978) Clinical application of hyperthermia in gynecological malignant tumors. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 326–327Google Scholar
  341. Power J, Harris J (1977) Response of extremely hypoxic cells to hyperthermia: survival and oxygen enhancement ratios for exponential and plateau-phase cultures. Radiology 123:767–770PubMedGoogle Scholar
  342. Privalov PL (1979) Stability of proteins. Adv Protein Chem 33:167–241PubMedCrossRefGoogle Scholar
  343. Raaphorst GP, Spiro IJ, Azzam EJ, Sargent M (1987) Normal cells and malignant cells transfected with the HRas oncogene have the same heat sensitivity in culture. Int J Hyperthermia 3:209–216PubMedCrossRefGoogle Scholar
  344. Rabbani B, Sondhaus CA, Swingle KF (1978) Cellular response to hyperthermia and bleomycin: effect of time sequencing and possible mechanisms. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 291–293Google Scholar
  345. Radford JR (1983) Effects of hyperthermia on the repair of X-ray-induced DNA double strand breaks in mouse L cells. Int J Radiat Biol 43:551–557CrossRefGoogle Scholar
  346. Rassow J (1987) Physikalisch-methodische Grundlagen der Strahlentherapie. In: Scherer E (ed) Strahlentherapie. Springer, Berlin Heidelberg New York, pp 1–105Google Scholar
  347. Read RA, Fox MH, Bedford JS (1983) The cell cycle dependence of thermotolerance. Radiat Res 93:93–106PubMedCrossRefGoogle Scholar
  348. Reeves O (1972) Mechanism of acquired resistance to acute heat shock in cultured mammalian cells. J Cell Physiol 79:157–159PubMedCrossRefGoogle Scholar
  349. Reeves O (1982) Mechanism of acquired resistance to acute heat shock in cultured mammalian cells. J Cell Physiol 79:157–159CrossRefGoogle Scholar
  350. Reinhold HS, Wike-Hooley JL, van den Berg AP, van den Berg-Blok A (1984) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology, vol II. Francis and Taylor, London, pp 41–52Google Scholar
  351. Reinhold HS, Wike-Hooley JL, van den Berg AP, van den Berg-Blok A (1985) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology 1984, vol. II. Taylor and Francis, London, pp 41–52Google Scholar
  352. Reiter T, Penman S (1983) Prompt heat shock proteins: transla-tionally regulated synthesis of new proteins associated with the nuclear matrix-intermediate filaments as an early response to heat shock. Proc Natl Acad Sci USA 80:4737–4741PubMedCrossRefGoogle Scholar
  353. Rice LC, Urano M, Maher J (1982) The kinetics of thermotolerance in the mouse foot. Radiat Res 89:291–297PubMedCrossRefGoogle Scholar
  354. Robins HI, Dennis WH, Slattery IS, Lange TA, Yatvin MB (1983) Systemic lidocaine enhancement of hyperthermia-in-duced tumor regression in transplantable murine tumor models. Cancer Res 43:3187–3191PubMedGoogle Scholar
  355. Robinson JE, Wizenberg MJ (1974) Thermal sensitivity and the effect of elevated temperatures on the radiation sensitivity of Chinese hamster cells. Acta Radiol [Ther] (Stockh) 13:241–249Google Scholar
  356. Robinson JE, Wizenberg MJ, McCready W, Scheltema J (1974) Combined hyperthermia and radiation suggest an alternative to heavy particle therapy for reduced oxygen enhancement ratios. Nature 251:521–522PubMedCrossRefGoogle Scholar
  357. Rofstad EK, Brustad T (1986) Arrhenius analysis of the heat response in vivo and in vitro of human melanoma xenografts. Int J Hyperthermia 2:359–368PubMedCrossRefGoogle Scholar
  358. Rofstad EK, Wahl A, Tveit KM, Monge OR, Brustad T (1985) Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumors in man. Radiother Oncol 4:33–44PubMedCrossRefGoogle Scholar
  359. Rose WC, Veras GH, Laster WR Jr, Schabel FM Jr (1979) Evaluation of whole-body hyperthermia as an adjunct to chemotherapy in murine tumors. Cancer Treat Rep 63:1311–1325PubMedGoogle Scholar
  360. Roti Roti JL (1982) Heat-induced cell death and radiosensitiza-tion: molecular mechanisms. NCI Monogr 61:3–9Google Scholar
  361. Roti Roti JL, Henle KJ (1979) Comparison of two mathematical models for describing heat-induced cell killing. Radiat Res 78:522–531PubMedCrossRefGoogle Scholar
  362. Roti Roti JL, Painter RB (1982) Effects of hyperthermia on the Sedimentation of nucleoids from HeLa cells in sucrose gradients. Radiat Res 89:166–175PubMedCrossRefGoogle Scholar
  363. Rotstein LE, Daly J, Rozsa P (1983) Systemic ther-mochemotherapy in a rat model. Can J Surg 26:113–116PubMedGoogle Scholar
  364. Rowley R, Joyner DE, Stewart JR (1987) In vitro response to hyperthermia or X-irradiation of diploid and tetraploid RIF-1 cells separated by centrifugal elutriation. Int J Hyperthermia 3:235–244PubMedCrossRefGoogle Scholar
  365. Ruifrok ACC, Kanon B, Hulstaart CE, Konings AWT (1984) Permeability change of cells treated with hyperthermia alone and in combination with X-irradiation. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 65–68Google Scholar
  366. Ruifrok ACC, Kanon B, Konings AWT (1985 a) Correlation between cellular survival and potassium loss in mouse fibroblasts after hyperthermia alone and after a combined treatment with X-rays. Radiat Res 101:326–331PubMedCrossRefGoogle Scholar
  367. Ruifrok ACC, Kanon B, Konings AWT (1985 b) Correlation of colony forming ability of mammalian cells with potassium content after hyperthermia under different experimental conditions. Radiat Res 103:452–454PubMedCrossRefGoogle Scholar
  368. Ruifrok ACC, Kanon B, Konings AWT (1986) Na+/K+ ATPase activity in mouse lung fibroblasts and HeLa S-3 cells during and after hyperthermia. Int J Hyperthermia 2:51–59PubMedGoogle Scholar
  369. Ruifrok ACC, Kanon B, Konings AWT (1987) Heat-induced K+ loss, trypan blue uptake, and cell lysis in different cell lines: effect of serum. Radiat Res 109:303–309PubMedCrossRefGoogle Scholar
  370. Russo A, Mitchell JB, McPherson S (1984) The effects of glutathione depletion on thermotolerance and heat stress protein synthesis. Br J Cancer 49:753–758PubMedCrossRefGoogle Scholar
  371. Sapareto SA (1987) A workshop on thermal dose in cancer therapy: introduction. Int J Hyperthermia 3:289–290PubMedCrossRefGoogle Scholar
  372. Sapareto SA, Hopwood L, Dewey W, Raju M, Gray J (1978) Effects of hyperthermia on survival and progression of Chinese hamster overy cells. Cancer Res 38:393–400PubMedGoogle Scholar
  373. Schamhart DHJ, van Walraven HS, Weigant FAC, Linnemans WAM, van Rijn J, van den Berg J, van Wijk R (1984) Thermotolerance in cultured hepatoma cells: cell viability, cell morphology, protein synthesis, and heat shock proteins. Radiat Res 98:89–95CrossRefGoogle Scholar
  374. Schlag H, Lücke-Huhle C (1976) Cytokinetic studies on the effect of hyperthermia on Chinese hamster lung cells. Eur J Cancer 12:827–831PubMedCrossRefGoogle Scholar
  375. Schlesinger MJ, Ashburner M, Tissieres A (eds) (1982) Heat shock: from bacteria to Man. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  376. Schlesinger MJ, Aliperti G, Kelley PM (1982b) The response of cells to heat shock. Trends Biochem Sci 7:222–225CrossRefGoogle Scholar
  377. Schubert B, Streffer C, Tamulevicius P (1982) Glucose metabolism in mice during and after whole-body hyperthermia. N C I Monogr 61:203–205Google Scholar
  378. Schulman N, Hall E (1974) Hyperthermia: its effect on proliferative and plateau phase cell cultures. Radiology 113: 207–209Google Scholar
  379. Sciandra JJ, Subjeck JR (1984) Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res 44:5188–5194PubMedGoogle Scholar
  380. Shah SA, Jain RK, Finney PL (1983) Enhanced metastasis formation by combined hyperthermia and hyperglycemia in rats bearing W256 carcinosarcoma. Cancer Lett 19: 317–323PubMedCrossRefGoogle Scholar
  381. Shall S (1984) ADR-ribose in DNA repair: a new component of DNA excision repair. Adv Radiat Biol 11:1–69Google Scholar
  382. Shenoy MA, Singh BB (1985) Temperature-dependent modification of radiosensitivity following hypoxic cytocidal action of delorpromazine. Radiat Environ Biophys 24:113–117PubMedCrossRefGoogle Scholar
  383. Sijens PE, Bovee WMMJ, Seijkens D, Koole P, Los G, van Rijs-sel RH (1987) Murine mammary tumor response to hyperthermia and radiotherapy evaluated by in vivo 31-P-nuclear magnetic resonance spectroscopy. Cancer Res 47: 6467–6473PubMedGoogle Scholar
  384. Silberman AW, Rand RW, Storm FK, Drury FB, Benz ML, Morton DL (1985) Phase 1 trial of thermochemotherapy for brain malignancy. Cancer 56:48–56PubMedCrossRefGoogle Scholar
  385. Simard R, Bernhard W (1967) A heat-sensitive cellular function located in the nucleolus. J Cell Biol 34:61–76PubMedCrossRefGoogle Scholar
  386. Simpson TA, La Russa PG, Mullins DW, Daugherty JP (1987) Restoration of hyperthermia-associated increased protein to DNA ratio of nucleoids. Int J Hyperthermia 3:49–62PubMedCrossRefGoogle Scholar
  387. Singer SJ, Nicolson GI (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  388. Skibba JL, Collins FG (1978) Effect of temperature on biochemical functions in the isolated perfused rat liver. J Surg Res 24:435–441PubMedCrossRefGoogle Scholar
  389. Sminia P, Haveman J, Wondergem J, van Dijk JDP, Lebesque JV (1987) Effects of 434 MHz microwave hyperthermia applied to the rat in the region of the cervical spinal cord. Int J Hyperthermia 3:441–452PubMedCrossRefGoogle Scholar
  390. Song CW, Clement SS, Levitt SH (1977) Cytotoxic and radiosensitizing effects of 5-thio-D-glucose hypoxic cells. Radiology 123:201–205PubMedGoogle Scholar
  391. Song CW, Kang MS, Rhee JG, Levitt S (1980) Vascular damage and delayed cell death in tumours after hyperthermia. Br J Cancer 41:309–312PubMedCrossRefGoogle Scholar
  392. Song CW, Rhee JG, Levitt SH (1982) Effect of hyperthermia on hypoxic cell fraction in tumors. Int J Radiat Oncol Biol Phys 8:851–856PubMedGoogle Scholar
  393. Spiro IJ, Denman DL, Dewey WC (1982) Effect of hyperthermia on CHO DNA polymerase- and ß. Radiat Res 89:134–139PubMedCrossRefGoogle Scholar
  394. Stehlin JS Jr (1969) Hyperthermic perfusion with chemotherapy for cancers of the extremities. Surg Gynecol Obstet 120:305–308Google Scholar
  395. Stehlin JS Jr, Giovanella BC, Ipolyi de PD, Muenz LR, Anderson RF (1975) Results of hyperthermic perfusion for melanoma of the extremities. Surg Gynecol Obstet 140:339–348PubMedGoogle Scholar
  396. Stevenson MA, Minton KW, Hahn GM (1981) Survival and con-canavalin-A-induced capping in CHO fibroblasts after exposure to hyperthermia, ethanol, and X-irradiation. Radiation Res 86:467–478PubMedCrossRefGoogle Scholar
  397. Stewart FA, Denekamp J (1980) Fractionation studies with combined X-rays and hyperthermia in vivo. Brit J Radiol 53:346–356PubMedCrossRefGoogle Scholar
  398. Stone H (1978) Enhancement of local tumor control by misonidazole and hyperthermia. Br J Cancer 37 (Supp III): 178–183Google Scholar
  399. Streffer C (1963) Reaktivität und Struktur von Aminosäuren und Proteinen (Cystein und β-Galaktosidase). Dissertation, Universität FreiburgGoogle Scholar
  400. Streffer C (1969) Strahlen-Biochemie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  401. Streffer C (1982) Aspects of biochemical effects by hyperthermia. N C I Monogr 61:11–16Google Scholar
  402. Streffer C (1985 a). Mechanism of heat injury. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 213–222Google Scholar
  403. Streffer C (1985 b) Metabolic changes during and after hyperthermia. Int J Hyperthermia 1:305–319PubMedCrossRefGoogle Scholar
  404. Streffer C (1987) Biological basis for the use of hyperthermia in tumour therapy. Strahlentherapie 163:416–419Google Scholar
  405. Streffer C (1988 a) Aspects of metabolic changes of hyperthermia. In: Issels RD, Wilmanns W (eds) Application of hyperthermia in the treatment of cancer. Springer, Berlin Heidelberg New York, pp 7–16 (Recent results in cancer res, vol 107)Google Scholar
  406. Streffer C (1988 b) Effects of hyperthermic treatments on malig-nant cells and animal tumors: introductory remarks. In: Hinkelbein W et al. (eds) Preclinical hyperthermia. Springer, Berlin Heidelberg New York, pp 89–95 (Recent results in cancer res, vol 109)Google Scholar
  407. Streffer C, van Beuningen D (1985) Zelluläre Strahlenbiologie und Strahlenpathologie (Ganz- und Teilkörperbestrahlung). In: Diethelm L, Heuck F, Olsson O, Strnad F, Vieten H, Zup-pinger A (eds) Handbuch der medizinischen Radiologie, vol XX. Springer, Berlin Heidelberg New York, pp 1–39Google Scholar
  408. Streffer C, van Beuningen D, Elias S (1977) Comparative effects of tritiated water and thymidine on the preimplanted mouse embryos in vitro. Curr Top Radiat Res Q 12:182–193Google Scholar
  409. Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (1978) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, BaltimoreGoogle Scholar
  410. Streffer C, van Beuningen D, Zamboglou N (1979) Cell killing by hyperthermia and radiation in cancer therapy. In: Abe M, Sakamoto K, Philips TL (eds) Treatment of radioresistant cancers. Elsevier/North-Holland Biomedical, Amsterdam, pp 55–70Google Scholar
  411. Streffer C, Hengstebeck S, Tamulevicius P (1981) Glucose metabolism in mouse tumor and liver with and without hyperthermia. Henry Ford Hosp Med J 29:41–44PubMedGoogle Scholar
  412. Streffer C, Tamulevicius P, Schmidt K (1983 a) Poly (ADPR) synthetase activity in melanoma cells after hyperthermia and radiation. Radiat Res 94:589 (abstract)Google Scholar
  413. Streffer C, van Beuningen D, Bertholdt G, Zamboglou N (1983 b) Some aspects of radiosensitization by hyperthermia: neutrons and X-rays. In: Kano E (ed) Fundamentals of cancer therapy by hyperthermia, radiation and chemicals. MAG Tokyo, pp 121–134Google Scholar
  414. Streffer C, van Beuningen D, Uma Devi P (1984) Radiosensitization by hyperthermia in human melanoma cells: single and fractionated treatments. Cancer Treat Rev 11:179–185PubMedCrossRefGoogle Scholar
  415. Strom R, Crifo C, Rossi-Fanelli A, Mondovi B (1977) Biochemical aspects of heat sensitivity of tumor cells. In: Rossi-Fanelli A, Cavalière R, Mondovi B, Morrica G (eds) Selective heat sensitivity of cancer cells. Springer, Berlin Heidelberg New York, pp 7–35Google Scholar
  416. Subjek JR, Sciandra JJ, Johnson RJ (1982) Heat shock proteins: a comparison of induction kinetics. Br J Radiol 55:579–584CrossRefGoogle Scholar
  417. Suit HD, Shwayder M (1974) Hyperthermia: potential as an anti-tumor agent. Cancer 34:122–129PubMedCrossRefGoogle Scholar
  418. Suzuki K (1967) Application of heat to cancer chemotherapy: experimental studies. Nagoya J Med Sci 30:1–21PubMedGoogle Scholar
  419. Tacker JR, Anderson RU (1982) Delivery of antitumor drugs to bladder cancer by use of phase transition liposomes and hyperthermia. J Urol 127:1211–1214PubMedGoogle Scholar
  420. Takeda M, Majima H, Okada S, Suzuki N, Kubodera A (1987) Surviving fractions and cure-rate in spheroids by X-rays or heat. In: Onoyama Y (ed) Hyperthermic oncology ’86 in Japan. MAG Tokyo, pp 157–158Google Scholar
  421. Takeshita M, Grollmann AP, Ohtsubo E et al. (1978) Interaction of bleomycin with DNA. Proc Natl Acad Sci USA 75:5983–5987PubMedCrossRefGoogle Scholar
  422. Takiyama W (1984) Experimental studies on combined chemotherapy with hyperthermia and ethanol for advanced esophageal cancer. II. Effects of combined treatments on tumor growth in tumor-bearing mice. Nippon Geka Gakki Zasshi 85:118 (abstract)Google Scholar
  423. Tamulevicius P, Streffer C (1983) Does hyperthermia produce increased lysosomal enzyme activity? Int J Radiat Biol 43:321–327CrossRefGoogle Scholar
  424. Tamulevicius P, Schmidt K, Streffer C (1984a) The effects of X-irradiation, hyperthermia and combined modality treatment on poly (ADPR) synthetase activity in human melanoma cells. Radiat Res 100:65–77PubMedCrossRefGoogle Scholar
  425. Tamulevicius P, Würzinger U, Luscher G, Streffer C (1984b) Lipid metabolism in mouse liver and adenocarcinoma following hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 23–26Google Scholar
  426. Terasima T, Tolmach LJ (1963 a) Variations in several responses of HeLa cells to X-irradiation during the division cycle. Biophys J 3:11–33PubMedCrossRefGoogle Scholar
  427. Terasima T, Tolmach LJ (1963 b) X-ray sensitivity and DNA synthesis in synchronously dividing populations of HeLa cells. Science 140:490–492PubMedCrossRefGoogle Scholar
  428. Thislethwaite AJ, Alexander GA, Nerlinger RE, Moylan DJ, Leeper DB (1987) Modification of human tumor pH by elevation of blood glucose. Int J Radiat Oncol Biol Phys 13:603–610CrossRefGoogle Scholar
  429. Tomosovic SP, Steck PA, Heitzman D (1983) Heat stress proteins and thermal resistance in rat mammary cells. Radiat Res 95:399–413CrossRefGoogle Scholar
  430. Tomosovic SP, Rosenblatt PL, Johnston DA, Tang K, Lee PSY (1984) Heterogeneity in induced heat resistance and its relation to synthesis of stress proteins in rat tumor cell clones. Cancer Res 44:5850–5856Google Scholar
  431. Tsuboi A (1988) Effects of hyperthermia on mouse L cells irradiated with fractionated X-rays. Int J Hyperthermia 4:655–664PubMedCrossRefGoogle Scholar
  432. Twentyman PR, Morgan JE, Donaldson J (1978) Enhancement by hyperthermia of the effect of BCNU against the EMT6 mouse tumor. Cancer Treat Rep 62:439–443PubMedGoogle Scholar
  433. Urano M, Kahn J (1983) The change in hypoxic and chronically hypoxic cell fraction in murine tumors treated with hyperthermia. Radiat Res 96:549–559PubMedCrossRefGoogle Scholar
  434. Urano M, Kahn BS (1986) Differential kinetics of thermal resistance (thermotolerance) between murine normal and tumour tissues. Int J Radiat Oncol Biol Phys 12:89–93PubMedGoogle Scholar
  435. Urano M, Kim MS (1983) Effect of hyperglycemia in ther-mochemotherapy of a spontaneous murine fibrosarcoma. Cancer Res 43:3041–3044PubMedGoogle Scholar
  436. Urano M, Kim MS, Kenton L, Li ML (1985) Effect of ther-mochemotherapy (combined cyclophosphamide and hyperthermia) given at various temperatures with or without glucose administration on a murine fibrosarcoma. Cancer Res 45:4162–4166PubMedGoogle Scholar
  437. van Beuningen D (1983) Hyperthermia als cytotoxisches und strahlensensibilisierendes Agens: zelluläre Effekte — eine Übersicht. Strahlentherapie 159:60–66PubMedGoogle Scholar
  438. van Beuningen D, Streffer C (1988) Importance of thermotolerance for radiothermotherapie as assessed using too human melanoma cell lines. In: Hinkelbein W et al. (eds) Preclinical hyperthermia. Springer, Berlin Heidelberg New York, pp 203–213 (Recent results in cancer res, vol 109)Google Scholar
  439. van Beuningen D, Molls M, Schulz S, Streffer C (1978) Effects of irradiation and hyperthermia on the development of preimplanted mouse embryos in vitro. In: Streffer C et al. (eds) Cancer therapy by hyperthermic and radiation. Urban and Schwarzenberg, Baltimore, pp 151–153Google Scholar
  440. van Beuningen D, Issa M, Breipohl W, Streffer C, Raumwolf M (1983) Light- and electron-microscopical investigations on the effect of hyperthermia on the small intestine. Strahlentherapie 159:367 (abstract)Google Scholar
  441. van Beuningen D, Streffer C, Pelzer T (1985) Radiosensitization of exponential and plateau phase cells. Strahlentherapie 161:552Google Scholar
  442. Van der Linden PWG, Sapareto SA, Corbett TH, Valeriote FA (1984) Adriamycin and heat treatments in vitro and in vivo. Hyperthermic Oncology 1984, Vol. 1, Summary papers. Proceedings of the 4th International Symposium on Hyperthermic Oncology, Aarhus, Denmark, 2–6 July 1984, pp 449–452Google Scholar
  443. van Rijn J, van den Berg J, Schamhart DHJ, van Wijk R (1984) Effect of thermotolerance on thermal radiosensitization in hepatoma cells. Radiat Res 97:318–328PubMedCrossRefGoogle Scholar
  444. Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. In: Streffer C (ed) Hyperthermia and the therapy of malignant tumors. Springer, Berlin Heidelberg New York, pp 71–109 (Recent results in cancer research, vol 104)Google Scholar
  445. Vaupel P, Müller-Klieser W, Otte J, Manz R, Kallinowski F (1983 a) Durchblutung, Sauerstoffversorgung des Gewebes und pH-Verteilung in malignen Tumoren nach Hyperthermie. Pathophysiologische Grundlagen und Einfluß verschiedener Hyperthermiedosen. Strahlentherapie 159: 73–81PubMedGoogle Scholar
  446. Vaupel P, Benzing H, Egelhof E, Müller-Klieser W, Müller-Schauenburg (1983 b) The effect of various thermal doses on the regional tumor blood flow measured by heat clearance. Strahlentherapie 159:384 (abstract)Google Scholar
  447. Verma SP, Wallach DFH (1976) Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: Evidence from Raman spectroscopy. Proc Natl Acad Sci USA 73:3558–3561PubMedCrossRefGoogle Scholar
  448. Vexler AM, Litinskaya LL (1986) Changes in intracellular pH induced by hyperthermia and hypoxia. Int J Hyperthermia 2:75–81PubMedGoogle Scholar
  449. Vidair CA, Dewey WC (1986) Evaluation of a role of Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing. Radiat Res 105:187–200PubMedCrossRefGoogle Scholar
  450. Vig BK, Cornforth M, Farook SAF (1982) Hyperthermic potentiation of chromosome aberrations by anticancer antibiotics. Cytogenet Cell Genet 33:35–41PubMedCrossRefGoogle Scholar
  451. von Ardenne M (1971) The cancer multi-step therapy concept. Panminerva Med 13:509–519Google Scholar
  452. von Ardenne M (1975) Prinzipien und Konzept 1974 der Krebs-Mehrschritt-Therapie. Radiobiol Radiother 16:99–119Google Scholar
  453. von Ardenne M (1978) On a new physical principle for selective local hyperthermia of tumor tissue. In: Streffer C, van Beun-ingen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Proceedings of the second international symposium Essen, June 2–4 1977 Urban and Schwarzenberg, Baltimore, pp 96–104Google Scholar
  454. von Ardenne M (1982) Selective multiphase cancer therapy: Conceptional aspects and experimental basis. 185 Adv. Pharmacol Chemother. 10:339–380Google Scholar
  455. von Ardenne M, Reitnauer P (1976) Verstärkung der mit Glukoseinfusion erzielbaren Tumorübersäuerung in vivo durch NAD. Arch. Geschwulstforsch 30:319–330Google Scholar
  456. von Ardenne M, Chaplain R, Reitnauer P (1969) Selektive Krebszellenschädigung durch eine Attackenkombination mit Übersäuerung Hyperthermie, Vitamin A, Dimethylsulfoxid und weiteren die Freisetzung lysosomaler Enzyme fördernder Agenzien. Arch Geschwulstforsch 33:331–344Google Scholar
  457. Wallach D (1977) Basic mechanisms in tumor thermotherapy. J Mol Med 2:381–403Google Scholar
  458. Wallach DHF (1978) Action of hyperthermia and ionizing radiation on plasma membranes: In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott K-R (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, p 19–28Google Scholar
  459. Wallenfels K, Streffer C (1964) Chemische Reaktivität von Proteinen. In: 14. Colloquium der Gesellschaft für physiologische Chemie in Mosbach/Baden. Springer, Berlin Göttingen Heidelberg, pp 6–40Google Scholar
  460. Wallenfels K, Streffer C (1966) Das Dissoziationsverhalten von Cystein und verwandten SH-Verbindungen. Biochem Z 346:119–132Google Scholar
  461. Warburg O, Wind F, Negelein E (1926) Über den Stoffwechsel von Tumoren im Körper. Klin Wochenschr 5:829–834CrossRefGoogle Scholar
  462. Ward KA, Jain RK (1988) Response of tumours to hyperglycaemia: characterization, significance and role in hyperthermia. Int J Hyperthermia 4:223–250PubMedCrossRefGoogle Scholar
  463. Warocquier R, Scherrer K (1969) RNA metabolism in mammalian cells at elevated temperature. Eur J Biochem 10:362–370PubMedCrossRefGoogle Scholar
  464. Warters RL, Roti Roti JL (1982) Hyperthermia and the cell nucleus. Radiat Res 92:458–462PubMedCrossRefGoogle Scholar
  465. Warters RL, Stone OL (1983 a) Effects of hyperthermia on DNA replication in HeLa cells. Radiat Res 93:71–84PubMedCrossRefGoogle Scholar
  466. Warters RL, Stone OL (1983 b) Histone protein and DNA synthesis by HeLa cells and thermal schock. Radiat Res 96:646PubMedCrossRefGoogle Scholar
  467. Warters RL, Brizgys LM, Sharma R, Roti Roti JL (1986) Heat shock (45 °C) results in an increase of nuclear matrix protein mass in HeLa cells. Int J Radiat Biol 50:253–268CrossRefGoogle Scholar
  468. Weber G (1983) Biochemical strategy of cancer cells and the design of chemotherapy: GHA Glowes memorial lecture. Cancer Res 43:3466–3492PubMedGoogle Scholar
  469. Weinstein JN, Magin RL, Cysyk RL, Zaharko DS (1980) Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Res 40:1388–1395PubMedGoogle Scholar
  470. Westermark F (1898) Über die Behandlung des ulcerierenden Cervixcarcinoms mittels konstanter Wärme. Zentralbl Gynae-kol 22:1335Google Scholar
  471. Westermark N (1927) The effect of heat on rat tumors. Skand Arch Physiol 52:257–322Google Scholar
  472. Westra A, Dewey WC (1971) Heat shock during the cell cycle of Chinese hamster cells in vitro. Int J Radiat Biol 19:467–477CrossRefGoogle Scholar
  473. Wiegant F, Karelaars A, Blok F, Linnemanns W (1984) Effects of extra cellular Ca2+ concentrations upon hyperthermia induced cell death. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 3–6Google Scholar
  474. Wike-Hooley JL, Faithfull NS, van der Zee J, van den Berg AP (1983) Liver damage and extraction of indocyamine green under whole body hyperthermia. Eur J Appl Physiol 51:269–279CrossRefGoogle Scholar
  475. Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527PubMedGoogle Scholar
  476. Wizenberg M, Robinson JE (1975) Proceedings of the international symposium on cancer therapy by hyperthermia and radiation. American College of Radiology, BaltimoreGoogle Scholar
  477. Wondergem J, Havemann J (1983) The response of previously irradiation mouse skin to heat alone or combined with irradiation: influence of thermotolerance. Int J Radiat Oncol 44:539–552Google Scholar
  478. Wondergem J, Begg A, Havemann J (1986) Effects of hyperthermia and X-irradiation on mouse stromal tissue. Int J Radiat Biol 50:65–76CrossRefGoogle Scholar
  479. Wondergem J, Strebel FR, Siddik ZH, Newman RA, Bull JMC (1988) The effects of anaesthetics on cis-platinum-induced toxicity at normal temperatures and during whole-body hyperthermia: the influence of NaCl concentration of the vehicle. Int J Hyperthermia 4:643–654PubMedCrossRefGoogle Scholar
  480. Wong RSL, Dewey WC (1982) Molecular studies on the hyperthermic inhibition of DNA synthesis in Chinese hamster ovary cells. Radiat Res 92:370–395PubMedCrossRefGoogle Scholar
  481. Yamada K, Someya F, Shimada S, Ohara K, Kukita A (1984) Thermochemotherapy for malignant melanoma: combination therapy of ACNU and hyperthermia in mice. J Invest Dermatol 82:180–184PubMedCrossRefGoogle Scholar
  482. Yamane T, Koga S, Maeta M, Hamazoe R, Karino T, Oda M (1984) Effects of in vitro hyperthermia on concentration of adriamycin in Ehrlich ascites cells. Hyperthermic oncology 1984, vol. 1, summary papers. Proceedings of the 4th international symposium on hyperthermic oncology, Aarhus, 2–6 July 1984, pp 409–412Google Scholar
  483. Yatvin MB (1977) The influence of membrane lipid composition and procaine on hyperthermic death of cells. Int J Radiat Biol 32:513–521CrossRefGoogle Scholar
  484. Yatvin MB, Clifton KH, Dennis WH (1979) Hyperthermia and local anesthetics: potentiation of survival of tumor-bearing mice. Science 205:195–196PubMedCrossRefGoogle Scholar
  485. Yatvin MB, Mühlensiepen H, Porschen W, Weinstein JN, Feinendegen LE (1981) Selective delivery of liposome-associ-ated cis-dichlorodiamineplatinum (II) by heat and its influence on tumor drug uptake and growth. Cancer Res 41:1602–1607PubMedGoogle Scholar
  486. Yatvin MB, Cree TC, Elson CE, Gipp JJ, Tegmo I-M, Vorpahl JW (1982) Probing the relationship of membrane fluidity to heat killing of cells. Radiat Res 89:644–646PubMedCrossRefGoogle Scholar
  487. Yatvin MB, Abuirmeileh NM, Vorpahl JW, Elson CE (1983 a) Biological optimization of hyperthermia: modification of tumor membrane lipids. Eur J Cancer 19:657–663CrossRefGoogle Scholar
  488. Yatvin M-B, Vorpahl JW, Gould MN, Lyte M (1983 b) The effects of membrane modification and hyperthermia on the survival of P-388 and V-79 cells. Eur J Cancer 19:1247–1253CrossRefGoogle Scholar
  489. Yi PN (1983) Hyperthermia-induced intracellular ionic level changes in tumor cells. Radiat Res 93:534–544PubMedCrossRefGoogle Scholar
  490. Zupi G, Badaracco G, Cavaliere R, Natali PG, Greco C (1984) Influence of sequence on hyperthermia and drug combination. Hyperthermic Oncology 1984, Vol. 1, Summary papers. Proceedings of the 4th International Symposium on Hyperthermic Oncology, Aarhus, Denmark, 2–6 July 1984, pp 429–432Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • C. Streffer

There are no affiliations available

Personalised recommendations