Skip to main content

Part of the book series: Archives of Toxicology ((TOXICOLOGY,volume 14))

  • 119 Accesses

Abstract

The contact with or uptake of xenobiotics and/or infectious agents by men and animals may cause alterations of tissues, organs or the whole organism. On the other hand, living material requires a defined content of trace elements. Changes of these often unknown, optimal contents of trace elements are connected with deviations from the normal state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham JL (1980) Biomedical microanalysis – Putting it to work now in diagnostic pathology. Scanning Electron Microscopy IV: 171–178

    Google Scholar 

  • Augsten K, Stein G (1988) Scanning electron microscopy and x-ray microanalysis investigation of aluminium deposition in samples from hemodyalized patients. Trace Elem. Med. 5:55–59

    CAS  Google Scholar 

  • Augsten K, Güttner J (1990) Use of x-ray microanalysis to characterize liver necrosis of mice, rats and guinea-pig. Proc XII. Internat. Congress Electron Microscopy, Seattle (USA), 350–351

    Google Scholar 

  • Baker D, Kupke KD, Ingram P, Roggli VL, Shelburne JD (1985) Microprobe analysis in human pathology. Scanning Electron Microscopy II: 659–680

    Google Scholar 

  • Boyde A, Reid SA (1983) Simple collector for cathodoluminscence in the SEM made from aluminium foil. J Microscopy 132:239–242

    Article  CAS  Google Scholar 

  • Burns MS (1982) Applications of SIMS in biological research: a review. J Microscopy 127:237–258

    Article  CAS  Google Scholar 

  • Chandler JA (1987) X-ray microanalysis in the electron microscope Vol. 5, Part II of the Series “Practical Methods in Electron Microscopy”, 317–547; Ed by A. M. Glauert

    Google Scholar 

  • Chong NS, Norton NL, Anderson JL (1990) Multielement trace metal determination by electrodeposition, scanning electron microscopic x-ray fluorescence, and inductively coupled plasma mass spectrometry. Analytical Chemistry 62:1043–1050

    Article  CAS  Google Scholar 

  • Dymott TC (1989) Spectrometer design for inductively coupled plasma. Optical emission spectrometry. Intern. Laboratory, March, 26–37

    Google Scholar 

  • Echlin P (1977) Microanalysis in biology and medicine. Nature 270:102–103

    Article  Google Scholar 

  • Egerton RF, Egerton M (1983) An electron energy-loss bibliography. Scanning Electron Microscopy I:119–142

    Google Scholar 

  • Galle P, Berry JP, Escaig F (1983) Secondary ion mass microanalysis: Applications in biology. Scanning Electron Microscopy II:827–829

    Google Scholar 

  • Hantsche H (1989) Comparison of basic principles of the surface-specific analytical methods: AES/SAM, ESCA (XPS), SIMS and ISS with x-ray microanalysis, and some applications in research and industry. Scanning 11:257–280

    Article  CAS  Google Scholar 

  • Janssen AP, Venables JA (1979) Scanning Auger microscopy – an introduction for biologists. Scanning Electron Microscopy II:259–278

    Google Scholar 

  • Martin BW (1980) A microprobe based on particle-induced x-ray emission (PIXE) – a powerful tool for microanalyses in minerals and cells. Scanning Electron Microscopy I:419–438

    Google Scholar 

  • Schmidt PF (1984) Localization of trace elements with the laser microprobe mass analyzer (LAMMA). Trace Elem Med 1:13–20

    CAS  Google Scholar 

  • Shelburne JD, Estrada H, Hale M, Ingram P, Tucker JA (1989) Correlative microscopic and microprobe analysis in pathology. Proc. 47 Annual Meeting of the Electron Microscopy Society of America, 900–901

    Google Scholar 

  • Statham P, Pawley J (1978) A new method for particle x-ray microanalysis based on peak background measurements. Scanning Electron Microscopy I:469–478

    Google Scholar 

  • Zielkowski R, Bächmann K (1978) Instrumentelle Multianalyse in biologischen Matrices: Ein Vergleich von NAA, RFA und AAS. Fresenius Z. Anal. Chem. 290:143–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Augsten, K., Güttner, J. (1991). New Microtechniques in Toxicopathology. In: Chambers, P.L., Chambers, C.M., Wiezorek, W.D., Golbs, S. (eds) Recent Developments in Toxicology: Trends, Methods and Problems. Archives of Toxicology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74936-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74936-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51422-0

  • Online ISBN: 978-3-642-74936-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics