Multiple Criteria Decision Support Systems in Production Planning: A Micro Experience

  • Birsen Karpak
Conference paper
Part of the NATO ASI Series book series (volume 56)

Abstract

The implementation of the modified two person zero-sum game approach, contracting cone method and augmented Tchebycheff method on a production planning problem in a manufacturing organization is explained. Karpak, Kuruuzum (1987) compared the modified two person zero-sum game approach with the contracting cone method on a mainframe. In this study we describe our experience on a microcomputer.

Keywords

Marketing Turkey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belenson, S.M. & Kapur, K.C. 1973 “An algorithm for Solving Multicriterion Linear Programming Problems with Examples.”,O.R. Quarterly., 24(1), 65–77CrossRefGoogle Scholar
  2. 2.
    Cunningham, K. & Schrage L. 1987 VINO, The Scientific Press, Redwood City, CaliforniaGoogle Scholar
  3. 3.
    Karpak, B. 1988 Multiple Criteria Decision Support Systems in Production Planning, A Micro Experience, Working Paper, Youngstown State University, Youngstown, Ohio, USA.Google Scholar
  4. 4.
    Karpak, B. 1978 Cok Amacli Optimizasyon Modellerinin Irdelenmesi Oyunlar kuramina Dayali Etkilesimli Bir Algoritma Onerisi ve Cok Amacli Bir Uretim Planlama Surecine uygulanmasi (in Turkish). Unpublished Thesis to qualify as an Associate professor,Istanbul University, faculty of Business Administration,Rumelihisariustu,Istanbul,TurkeyGoogle Scholar
  5. 5.
    Karpak, B. and Kuruuzum, A. 1987 “Contracting Cone Method vs Modified Two Person Zero-Sum Game Approach: An Implementation in Production Planning” in Y.Sawaragi,K.Inoue and H.Nakayama, (Eds.),Toward Interactive and Intelligent Decision Support Systems,Springer Verlag,New YorkGoogle Scholar
  6. 6.
    Korhonen, P.J. 1987 VIG (Visual Interactive Goal Programming) User’s GuideGoogle Scholar
  7. 7.
    Korhonen, P.J.,& Wallenius, J., 1987 A Pareto Race, Unpublished Paper, Helsinki School of Economics.Google Scholar
  8. 8.
    Steuer, R.E. 1986. Multiple Criteria Optimization: Theory Computation and Application. Wiley, New YorkGoogle Scholar
  9. 9.
    Steuer, R.E. 1977. Vector Maximum Gradient Cone Constraction Techniques. Lecture Notes in Economics and mathematical Systems. in Zionts(ed) 155 Springer Verlag, New york.Google Scholar
  10. 10.
    Steuer, R.E. & Schuler, A.T. 1983 Operating Manual For ADBASE Multiple Objective Linear Programming Computer package, College of Business Administration, University of GeorgiaGoogle Scholar
  11. 11.
    Steuer, R.E. & Choo, E.U. 1983 “An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming ”, Mathematical Programming. 26(1), 326-344CrossRefGoogle Scholar
  12. 12.
    Zeleny, M. 1987 “Systems Approach to Multiple Criteria Decision Making” in Y.Sawaragi,K.Inoue and H.Nakayama, Eds.),Toward Interactive and Intelligent Decision Support Systems,Springer Verlag,New YorkGoogle Scholar
  13. 13.
    Zionts, S. 1987 Multiple Criteria Mathematical Programming: An Updated Overview and Several Approaches, in this publication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Birsen Karpak
    • 1
  1. 1.Department of ManagementYoungstown State UniversityYoungstownUSA

Personalised recommendations