Electronic correlation and effective interactions in small alkali clusters

  • F. Spiegelmann
  • P. Blaise
  • J. P. Malrieu
  • D. Maynau
Conference paper

Abstract

The crucial importance of correlation effects versus delocalization, and their nature in small Alkali clusters is analysed from an ab-initio point of view through a detailed investigation of the Li2 dimer. The role of the external correlation (provided by extended basis sets and large Configuration Interaction calculations) is shown to lower the energy of ionic configurations and to increase their weight in the electronic wavefunction, increasing simultaneously the importance of delocalization versus internal correlation within the s-band. Effective interactions are determined from accurate diabatic calculations on dimers and transfered to clusters via an effective hamiltonian spanned by s orthogonal orbitals. Although not including explicitely the p-band, this model provides results in good agreement with abinitio calculations on Lithium clusters.

PACS

31.20.D 36.40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knight, W.D., Clemenger, K., De Heer, W.A., Saunders, W.A., Chou, M., Cohen, M.L.: Phys. Rev. Lett. 52, 2141 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    Eckardt, M.: Phys. Rev. Lett. 52, 1925 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    Ishü, Y., Ohnishi, S., Sugano, S.: Phys. Rev. B 31, 1804 (1985).CrossRefGoogle Scholar
  4. 4.
    Koutecky, J., Fantucci, P.: Chem. Rev. 86, 539 (1986). Elemental and molecular clusters. Springer Series in Material Sciences, Vol. 6. Benedek, G., Martin, T.P., Pacchioni, G., (eds.). Berlin, Heidelberg, New York: Springer 1988.CrossRefGoogle Scholar
  5. Metal Bonding and interactions in high temperature systems with emphasis on alkali metals. Gole, J.L., Stwalley, W.C., (eds.). Washington D.C.: A.C.S. 1982.Google Scholar
  6. 5.
    Flad, J., Stoll, H., Preuss, H.: J. Chem. Phys. 71, 3042 (1979).ADSCrossRefGoogle Scholar
  7. Flad, J., Igel, G., Dolg, M., Stoll, H., Preuss, H.: Chem. Phys. 75, 331 (1983).CrossRefGoogle Scholar
  8. 6.
    Martins, J.L., Car, R., Buttet, J.: J. Chem. Phys. 78, 5646 (1983).ADSCrossRefGoogle Scholar
  9. Martins, J.L., Buttet, J., Car, R.: Phys. Rev. B 31, 1804 (1985).ADSCrossRefGoogle Scholar
  10. 7.
    Rao, B.K., Jena, P.: Phys. Rev. B 31, 1804 (1985).CrossRefGoogle Scholar
  11. 8.
    Boustani, I., Pewestorf, W., Fantucci, P., Bonacic-Koutecky, V., Koutecky, J.: Phys. Rev. B 35, 9437 (1987).ADSCrossRefGoogle Scholar
  12. 9.
    Bonacic-Koutecky, V., Fantucci, P., Koutecky, J.: Phys. Rev. B 37, 4369 (1988).ADSCrossRefGoogle Scholar
  13. 10.
    Brechignac, C., Cahuzac, Ph., Roux, J.P., Pavolini, D., Spiegelmann, F.: Chem. Phys. 87, 5694 (1987).ADSGoogle Scholar
  14. 11.
    Pavolini, D., Spiegelmann, F.: J. Chem. Phys (in press).Google Scholar
  15. 12.
    Companion, A.L., Stieble, D.J., Starshak, A.J.: J. Chem. Phys. 49, 3637 (1968).ADSCrossRefGoogle Scholar
  16. 13.
    Companion, A.L.: Chem. Phys. Lett. 56, 500 (1978).ADSCrossRefGoogle Scholar
  17. 14.
    Pickup, B.T., Byer, W., Brown, S.: Mol. Phys. 23, 1189 (1972).ADSCrossRefGoogle Scholar
  18. 15.
    Richstmeier, S.C., Dixon, D.A., Gole, J.L.: J. Phys. Chem. 86, 3942 (1982).CrossRefGoogle Scholar
  19. 16.
    Varandas, J.C., Morais, V.M.F.: Mol. Phys. 47, 1241 (1982).ADSCrossRefGoogle Scholar
  20. Varandas, J.C., Morais, V.M.F., Pais, A.A.C.C.: Mol. Phys. 58, 285 (1985).ADSCrossRefGoogle Scholar
  21. 17.
    Wang, Y., Georges, T.F., Lindsay, D.M., Beri, A.C.: J. Chem. Phys. 86, 3493 (1987).ADSCrossRefGoogle Scholar
  22. Lindsay, D.M., Wang, Y., Georges, T.F.: 86, 3500 (1987).Google Scholar
  23. 18.
    Maynau, D., Malrieu, J.P.: J. Chem. Phys. 88, 3163 (1988).ADSCrossRefGoogle Scholar
  24. 19.
    Hubbard, J.: Proc. Soc. London A 276, 238 (1963).ADSCrossRefGoogle Scholar
  25. 20.
    For an analysis in small clusters, see: Friedel, J.: In: Elemental and molecular clusters. Springer Series in Material Sciences, Vol. 6, p. 12. Berlin, Heidelberg, New York: Springer 1988.Google Scholar
  26. 21.
    Spiegelmann, F., Malrieu, J.P., Zurru, J.P., Maynau, D.: J. Chim. Phys. 83, 69 (1986) and references therein.Google Scholar
  27. 22.
    Blaise, P., Spiegelmann, F., Malrieu, J.P., Maynau, D.: (to be published).Google Scholar
  28. 23.
    Cimiraglia, R., Malrieu, J.P., Persico, M., Spiegelmann, F.: 18, 3073 (1985).Google Scholar
  29. 24.
    Komiha, N., Daudey, J.P., Malrieu, J.P.: J. Phys. B 20, 4375 (1987).ADSCrossRefGoogle Scholar
  30. Rajzman, M., Spiegelman, F., Malrieu, J.P.: J. Chem. Phys. 89, 433 (1988).ADSCrossRefGoogle Scholar
  31. 25.
    Pavolini, D., Spiegelmann, F.: J. Chem. Phys. 87, 2854 (1987).ADSCrossRefGoogle Scholar
  32. 26.
    Bonacic-Koutecky, V., Fantucci, P., Koutecky, J.: Chem. Phys. Lett. 146, 518 (1988).ADSCrossRefGoogle Scholar
  33. 27.
    Evangelisti, S., Daudey, J.P., Malrieu, J.P.: Phys. Rev. A 35, 4930 (1987).ADSCrossRefGoogle Scholar
  34. 28.
    Lindsay, D.M., Herschbach, D.R., Kurian, A.L.: Mol. Phys. 32, 1199 (1976).ADSCrossRefGoogle Scholar
  35. Garland, D.A., Lindsay, M.: J. Chem. Phys. 80, 10 (1984).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • F. Spiegelmann
    • 1
  • P. Blaise
    • 1
  • J. P. Malrieu
    • 1
  • D. Maynau
    • 1
  1. 1.Laboratoire de Physique Quantique, (UA 505 CNRS)Université Paul SabatierToulouseFrance

Personalised recommendations