Advertisement

Theoretical studies on carbon and silicon clusters: comparison of the structures and stabilities of neutral and ionic forms

  • Krishnan Raghavachari
Conference paper

Abstract

Optimized molecular geometries and electronic structures are determined for neutral, positively charged, and negatively charged carbon and silicon clusters containing up to ten atoms. The effects of polarization functions and electron correlation are included in these claculations. Carbon clusters have linear or monocyclic ground state geometries whereas silicon clusters containing five or more atoms have three-dimensional ground state structures. Neutral C4, C6 and C8 all have linear and monocyclic isomers of comparable stability whereas the ionic forms appear to be generally more stable as linear geometrical arrangements. In the case of neutral and positively charged carbon clusters, the odd-numbered clusters are significantly more stable than the adjacent even-numbered clusters whereas the opposite order of stability occurs for the negative ions. This is due to the large values of the electron affinities of the linear forms of even-numbered clusters such as C4 and C6. The relative stabilities of silicon clusters does not change with the charge state of the clusters.

PACS

31.20 36.40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, W.L., Freeman, R.R., Raghavachari, K., Schlüter, M.: Science 235, 860 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    Rohlfing, E.A., Cox, D.M., Kaldor, A.: J. Chem. Phys. 81, 3322 (1984).ADSCrossRefGoogle Scholar
  3. Bloomfield, L.A., Geusic, M.E., Freeman, R.R., Brown, W.L.: Chem. Phys. Lett. 121, 33 (1985).ADSCrossRefGoogle Scholar
  4. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: Nature (London) 318, 162 (1985).ADSCrossRefGoogle Scholar
  5. 3.
    Yang, S., Taylor, K.J., Craycraft, M.J., Conceicao, J., Pettiette, C.L., Cheshnovsky, O., Smalley, R.E.: Chem. Phys. Lett. 144, 431 (1988).ADSCrossRefGoogle Scholar
  6. 4.
    Bloomfield, L.A., Freeman, R.R., Brown, W.L.: Phys. Rev. Lett. 54, 2246 (1985).ADSCrossRefGoogle Scholar
  7. Martin, T.P., Schaber, H.: J. Chem. Phys. 83, 855 (1985).ADSCrossRefGoogle Scholar
  8. Liu, Y., Zhang, Q.-L., Tittle, F.K., Curl, R.F., Smalley, R.E.: J. Chem. Phys. 85, 7434 (1986).ADSCrossRefGoogle Scholar
  9. 5.
    Cheshnovsky, O., Yang, S.H., Pettiette, C.L., Craycraft, M.J., Liu, Y., Smalley, R.E.: Chem. Phys. Lett. 138, 119 (1987).ADSCrossRefGoogle Scholar
  10. 6.
    Whiteside, R.A., Krishnan, R., DeFrees, DJ., Pople, J.A., v.R. Schleyer, P.v.R.: Chem. Phys. Lett. 78, 538 (1981).ADSCrossRefGoogle Scholar
  11. Ewing, D.W., Pfeiffer, G.V.: Chem. Phys. Lett. 134, 413 (1987).ADSCrossRefGoogle Scholar
  12. Pacchioni, G., Koutecky, J.: J. Chem. Phys. 88, 1066 (1988).ADSCrossRefGoogle Scholar
  13. 7.
    Raghavachari, K., Whiteside, R.A., Pople, J.A.: J. Chem. Phys. 85, 6623 (1986).ADSCrossRefGoogle Scholar
  14. Raghavachari, K., Binkley, J.S.: J. Chem. Phys. 87, 2191 (1987).ADSCrossRefGoogle Scholar
  15. 8.
    Balasubramanian, K.: Chem. Phys. Lett. 135, 283 (1987).ADSCrossRefGoogle Scholar
  16. Pacchioni, G., Koutecky, J.: J. Chem. Phys. 84, 3301 (1986).ADSCrossRefGoogle Scholar
  17. Tománek, D., Schlüter, M.: Phys. Rev. Lett. 56, 1055 (1986).ADSCrossRefGoogle Scholar
  18. Ballone, P., Andreoni, W., Car, R., Parrinello, M.: Phys. Rev. Lett. 60, 271 (1988).ADSCrossRefGoogle Scholar
  19. Phillips, J.C.: Chem. Rev. 86, 619 (1986).CrossRefGoogle Scholar
  20. 9.
    Raghavachari, K., Logovinsky, V.: Phys. Rev. Lett. 55, 2853 (1985).ADSCrossRefGoogle Scholar
  21. Raghavachari, K.: J. Chem. Phys. 83, 3520 (1985).ADSCrossRefGoogle Scholar
  22. Raghavachari, K.: ibid, 84, 5672 (1986).ADSCrossRefGoogle Scholar
  23. Raghavachari, K., Rohlfing, C.M.: Chem. Phys. Lett. 143, 428 (1988).ADSCrossRefGoogle Scholar
  24. 10.
    For a discussion of the methods and basis sets used in this paper, see: Hehre, W.J., Radom, L., Schleyer, P.v.R., Pople, J.A.: Ab Initio Molecular Orbital Theory. New York: John Wiley 1986.Google Scholar
  25. 11.
    Nimlos, M.R., Harding, L.B., Ellison, G.B.: J. Chem. Phys. 87, 5116 (1987).ADSCrossRefGoogle Scholar
  26. 12.
    Faibis, A., Kanter, E.P., Tack, L.M., Bakke, E., Zabransky, B.J.: J. Phys. Chem. 91, 6445 (1987).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Krishnan Raghavachari
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations