Advertisement

Nonlinearity and Randomness in Quantum Transport

  • V. M. Kenkre
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 39)

Abstract

Strong interactions with lattice vibrations can lead to profound modifications in the transport of quasiparticles such as electrons or excitons moving in solids. Recent approaches to the problem of the description of such transport have been based on discrete nonlinear quantum evolution equations. This is a brief review of some aspects of this recent activity. The first part of the article consists of a bird’s- eye-view presentation of several recent results for the nonlinear quantum dimer as well as for spatially extended systems, and of their applications to various experiments ranging from muon spin relaxation to fluorescence depolarization. The second part focuses attention on a particular kind of the interplay of nonlinearity and of randomness in such systems.

Keywords

Extended Chain Density Matrix Element Muon Spin Relaxation Generalize Master Equation Fluorescence Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. D. Holstein, Ann Phys. (NY) 8, 325, 343 (1959);ADSCrossRefGoogle Scholar
  2. 1.
    D. Emin, Adv. Phys. 24, 305 (1975)ADSCrossRefGoogle Scholar
  3. 2.
    R. J. Silbey, Ann. Rev. Phys. Chem. 22, 203 (1976)ADSCrossRefGoogle Scholar
  4. 3.
    C. B. Duke and L. B. Schein, Physics Today 33, no. 2, 42 (1980)MathSciNetCrossRefGoogle Scholar
  5. 4.
    V. M. Kenkre and P. Reineker, Exciton Dynamics in Molecular Crystals and Aggregates, ed. G. Hohler (Springer-Verlag, Berlin, 1982)Google Scholar
  6. 5.
    A. S. Davydov, J. Theor. Biol. 38, 559 (1973); Usp. Fiz. Nauk. 138, 603 (1982) and references thereinCrossRefGoogle Scholar
  7. 6.
    A. C. Scott, F. Y. Chu, and D. W. McLaughlin, Proc. I.E.E.E. 61, 1443 (1973)MathSciNetADSGoogle Scholar
  8. 7.
    J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, Physica D 16, 318 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 8.
    J. M. Hyman, D. W. McLaughlin and A. C. Scott, Physica D 3, 28 (1981)ADSCrossRefGoogle Scholar
  10. 9.
    D. W. Brown, K. Lindenberg and B. J. West, Phys. Rev. B 37, 2946 (1988)ADSCrossRefGoogle Scholar
  11. 10.
    V. M. Kenkre and D. K. Campbell, Phys. Rev. B 34, 4959 (1986)ADSCrossRefGoogle Scholar
  12. 11.
    V. M. Kenkre and G. P. Tsironis, Phys. Rev. B 35, 1473 (1987)ADSCrossRefGoogle Scholar
  13. 12.
    V. M. Kenkre, G. P. Tsironis and D. K. Campbell, in Nonlinearity in Condensed Matter, ed. A. R. Bishop, D. K. Campbell, P. Kumar and S. E. Trullinger, (Springer-Verlag 1987)Google Scholar
  14. 13.
    G. P. Tsironis and V. M. Kenkre, Phys. Letters A 127, 209 (1988)ADSCrossRefGoogle Scholar
  15. 14.
    V.M.Kenkre and G.P.Tsironis, Chem. Phys., to be published, Dec. (1988)Google Scholar
  16. 15.
    L. Cruzeiro-Hansson, P. L. Christiansen and J. N. Elgin, Phys. Rev. B 37, 7896 (1988)MathSciNetADSCrossRefGoogle Scholar
  17. 16.
    M. Ablowitz, SIAM, Review 19, 663 (1977);MathSciNetzbMATHCrossRefGoogle Scholar
  18. 16.
    M. J. Ablowitz and J. F. Ladik, J. Math. Phys. 17, 1011 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 17.
    K. W. Kehr and Kazuo Kitahara, J. Phys. Soc. Japan, 56, 889, 4289 (1987);ADSCrossRefGoogle Scholar
  20. 17.
    K. W. Kehr and Kazuo Kitahara, to be published.Google Scholar
  21. 18.
    V. M. Kenkre and H. -L. Wu, University of New Mexico preprintGoogle Scholar
  22. 19.
    R. Zwanzig, in Lectures in Theoretical Physics vol.III, ed. W. Brittin, B. Downs and J. Down (Interscience 1961)Google Scholar
  23. 20.
    H. -L. Wu and V. M. Kenkre, Phys. Rev. B 39, xxxx(1989) to be published; see also Bul. Am. Phys. Soc. 33, K 22–5 (1988)Google Scholar
  24. 21.
    D. W. Brown, K. Lindenberg and B. J. West, Phys. Rev. B 37, 2946 (1988)ADSCrossRefGoogle Scholar
  25. 22.
    T. S. Rahman, R. S. Knox and V. M. Kenkre, Chem. Phys. (1978)Google Scholar
  26. 23.
    V. M. Kenkre and H. -L. Wu, Bui. Am. Phys. Soc. 33, no. K 22–6 (1988)Google Scholar
  27. 24.
    M. Toda, Theory of Nonlinear Lattices (Springer-Verlag, Berlin 1981)zbMATHGoogle Scholar
  28. 25.
    V. M. Kenkre, H.-L. Wu, and I. Howard, Bul. Am. Phys. Soc. 33, K 22–4 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • V. M. Kenkre
    • 1
  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations