Advertisement

Nonresonant Effects in CO2 Amplifier of Ultrashort Laser Pulses

  • S. Chelkowski
  • A. D. Bandrauk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 39)

Abstract

The coherent resonant interaction of laser pulses shorter than the medium relaxation times (called ultrashort pulses) has been discussed previously in detail (1967–1970) for media consisting of two–level systems and gives rise to nonlinear coherent phenomena such as self induced transparency and soliton propagation in attenuating media [1–3]. In amplifying media these phenomena allow one to obtain very short and intense pulses. Molecular systems cannot be in general considered as the two-level systems, so there is a need to examine pulse propagation in many level-systems both theoretically and experimentally.

Keywords

Rabi Frequency Transition Dipole Moment Induce Polarization Schroedinger Equation Pulse Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Allen, J.H. Eberly, Optical Resonance and Two-Level Atoms (J. Wiley Sons Inc., N.Y. 1975)Google Scholar
  2. 2.
    G.L. Lamb, Jr., Rev. Mod. Phys. 43, 99, (1971)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    G.L. Lamb, Jr. Elements of Soliton Theory (J. Wiley Sons Inc., N.Y. 1980)zbMATHGoogle Scholar
  4. 4.
    P.B. Corkum, IEE J. Quant. Electron. QE-21, 216 (1985); in Laser Acceleration of Particles, AIP Conf. Proc., #130, 493 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    J.I. Steinfeld, Molecules and Radiation, (Harper Row Publishers, N.Y. 1974) p.271Google Scholar
  6. 6.
    A.O. Markano, V.T. Platonenko, Sov. J. Quantum Electron. 10, 433, (1980)CrossRefGoogle Scholar
  7. 7.
    V.T. Platonenko, V.D. Taranukhin, Sov. J. Quantum Electron. 13, 1459, (1983)CrossRefGoogle Scholar
  8. 8.
    We defined in this paper the Rabi frequency as a product of the electric field intensity and the transition dipole moment, averaged over magnetic quantum number m, corresponding to P(20) transition equal to 0.015 Debye [13–15]Google Scholar
  9. 9.
    G.H. Herzberg, Molecular spectra and Molecular Structure, Vol.2, Van Nostrand Reinhold Company, N.Y. (1945), p.14 and 21Google Scholar
  10. 10.
    S. Chelkowski and A.D. Bandrauk: In Atomic and Molecular Processes with Intense Laser Pulses, ed. by A.D. Bandrauk, NATO ASI Series, Series B:Physics, Vol.171 (Plenum Press, N.Y. 1988), p.57; J. Chem. Phys. 89, 3618 (1988)CrossRefGoogle Scholar
  11. 11.
    D.K. Campbell, M. Peyrard, P. Sodano, Physica 19D, 165 (1986)MathSciNetADSGoogle Scholar
  12. 12.
    S. Chelkowski, A.D. Bandrauk, submitted to J. Opt. Soc. Am. BGoogle Scholar
  13. 13.
    A.M. Robinson, Can. J. Phys. 50, 2471 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    I.B. Burak, L.A. Gamss, J. Chem. Phys., 65, 5385 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    A. Yariv, Quantum Electronics, (J. Wiley Sons Inc., N.Y. 1975) p. 550Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • S. Chelkowski
    • 1
  • A. D. Bandrauk
    • 1
  1. 1.Departement de chimieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations