The Role of Predation in Zooplankton Succession

  • Z. Maciej Gliwicz
  • Joanna Pijanowska
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

For the last two decades predation has been considered to be a major driving force in shaping zooplankton communities and in determining their density and structure. In early studies, species succession was usually considered to be the result of differences in ecological tolerance to various abiotic environmental factors, such as light intensity and water density or viscosity (Hutchinson, 1967). By the early 1960s, the time of worldwide “productivity” research, the competition for resources was usually considered to be the primary driving force. Later, after the pioneering papers by Hrbacek (Hrbacek, 1962; Hrbacek et al., 1961) were cited by Brooks and Dodson (1965) and Hall et al. (1976), predation was considered to be the major factor responsible for successional events.

Keywords

Biomass Migration Steam Phytoplankton Meso 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, J.D. 1973. Competition and the relative abundance of two cladocerans. Ecology 54: 484–498.Google Scholar
  2. Anderson, G., Berggren, H., Cronberg, G., and Gelin, C. 1978. Effects of planktivorous and bentivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.Google Scholar
  3. Baumann, P.C. and Kitchell, J.F. 1974. Diel patterns of distribution and feeding of bluegill (Lepomis macrochirus) in Lake Wingra, Wisconsin. Transactions of the American Fisheries Society 103: 255–260.Google Scholar
  4. Beattie, D.M., Golterman, H.L., and Vijverberg, J. 1978. Introduction to the limnology of Friesian lakes. Hydrobiologia 58: 49–64.Google Scholar
  5. Berg, K. and Nygaard, G. 1929. Studies of the plankton in the Lake Frederiksborg Castle. Memoires de l’Academie Royale des sciences et des lettres de Danemark, Section des Sciences, serie 9, 1: 223–316.Google Scholar
  6. Birge, E.A. 1898. Plankton studies on Lake Mendota. II. The Crustacea of the plankton from July 1894, to December 1896. Transactions of the Wisconsin Academy of Sciences, Arts and Letters 11: 274–451.Google Scholar
  7. Black, R.W. 1980. The genetic component of cyclomorphosis in Bosmina, pp. 456–469, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  8. Blaxter, J.H.S. 1966. The behavior and physiology of herring and other clupeids., pp. 261–393, in Russel, F.S. (editor), Advances in Marine Biology. Academic Press, New York.Google Scholar
  9. Bosch, F.V.D. and Ringelberg, J. 1985. Seasonal succession and population dynamics of Keratella cochlearis (Ehrb.) and Kellicotia longispina (Kellicot) in Lake Maarsseveen I (Netherlands). Archiv für Hydrobiologie 103: 273–290.Google Scholar
  10. Brandl, Z. and Fernando, C.H. 1979. The impact of predation by the copepod Mesocyclops edax (Forbes) on zooplankton in three lakes in Ontario, Canada. Canadian Journal of Zoology 57: 940–942.Google Scholar
  11. Brock, D.A. 1980. Genotypic succession in the cyclomorphosis of Bosmina longirostris (Cladocera). Freshwater Biology 10: 239–250.Google Scholar
  12. Brooks, J.L. 1965. Predation and relative helmet size in cyclomorphic Daphnia. Proceedings of the National Academy of Sciences, USA 53: 119–126.Google Scholar
  13. Brooks, J.L. and Dodson, S.I. 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedGoogle Scholar
  14. Carlin, B. 1943. Die Planktonrotatorien des Notalostrom: zur Taxonomie und Ökologie der Planktonrotatorien. Meddelanden från Lunds Universitets Limnologiska Institution 5: 1–255.Google Scholar
  15. Clark, A.S. and Carter, J.C.H. 1974. Population dynamics of cladocerans in Sunfish Lake, Ontario. Canadian Journal of Zoology 52: 1235–1242.Google Scholar
  16. Coveney, M.F., Cronberg, G., Enell, M., Larsson, K., and Oloffson, L. 1977. Phytoplankton, zooplankton and bacteria—standing crop and production relationships in a eutrophic lake. Oikos 29: 5–21.Google Scholar
  17. Cryer, M., Peirson, G., and Townsend, C.R. 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Limnology and Oceanography 31: 1022–1038.Google Scholar
  18. Culver, D. 1980. Seasonal variation in the sizes at birth and first reproduction in Cladocera, pp. 358–366, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  19. Dawidowicz, P. and Gliwicz, Z.M. 1983. Food of brook charr in extreme oligotrophic conditions. Environmental Biology of Fishes 8: 55–60.Google Scholar
  20. Dawidowicz, P. and Pijanowska, J. 1984. Population dynamics in cladoceran zooplankton in the presence and absence of fishes. Journal of Plankton Research 6: 953–959.Google Scholar
  21. De Bernardi, R. 1974. The dynamics of a population of Daphnia hyalina (Leydig) in Lago Maggiore, Northern Italy. Memorie del Istituto italiano di idrobiologia 31: 221–243.Google Scholar
  22. De Bernardi, R. 1979. Some problems in the study of population dynamics of zooplankton. Bolletino di zoologia 46: 179–189.Google Scholar
  23. De Bernardi, R. and Canali, S. 1975. Population dynamics of pelagic cladocerans in Lago Maggiore. Memorie del Istituto italiano di idrobiologia 32: 365–392.Google Scholar
  24. De Bernardi, R. and Giussani, G. 1975. Population dynamics of three cladocerans of Lago Maggiore related to predation pressure by a planktophagous fish. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 19: 2908–2912.Google Scholar
  25. De Bernardi, R. and Giussani, G. 1978. Effect of mass fish mortality on zooplankton structure and dynamics in a small Italian lake (Lago de Annone). Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 20: 1045–1048.Google Scholar
  26. DeMott, W.R. 1983. Seasonal succession in a natural Daphnia assemblage. Ecological Monographs 53: 321–340.Google Scholar
  27. DeMott, W.R. and Kerfoot, W.C. 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.Google Scholar
  28. Dodson, S.I. 1974a. Zooplankton competition and predation: an experimental test of size-efficiency hypothesis. Ecology 55: 605–613.Google Scholar
  29. Dodson, S.I. 1974b. Adaptive change in plankton morphology in response to size selective predation: A new hypothesis of cyclomorphosis. Limnology and Oceanography 19: 721–729.Google Scholar
  30. Dorazzio, R.M. and Lehman, J.T. 1983. Optimal reproductive strategies in age-structured populations of zooplankton. Freshwater Biology 13: 157–175.Google Scholar
  31. Drenner, R.W. and McComas, S.R. 1980. The roles of zooplankter escape ability and fish size selectivity in the selective feeding and impact of planktivorous fish, pp. 587–593, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  32. Drenner, R.W., de Noyelles, F. Jr., and Kettle, D. 1982. Selective impact of filter-feeding gizzard shad on zooplankton community structure. Limnology and Oceanography 27: 965–968.Google Scholar
  33. Drenner, R.W., Taylor, S.B., Lazzaro, X., and Kettle, D. 1984. Particle-grazing and plankton community impact of an omnivorous cichlid. Transactions of the American Fisheries Society 113: 397–402.Google Scholar
  34. Edmondson, W.T. and Litt, A.H. 1982. Daphnia in Lake Washington. Limnology and Oceanography 27: 272–293.Google Scholar
  35. Elgmork, K. 1980. Evolutionary aspects of diapause in freshwater copepods, pp. 411–417, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  36. Eloranta, P.V. 1982. Zooplankton in the Vassikalampi pond, a warm water effluent recipient in Central Finland. Journal of Plankton Research 4: 813–837.Google Scholar
  37. Enderlin, O. 1981. When, where, what and how much does the adult cisco, Coregonus albula (L.) eat in the Bothnian Bay during the ice-free season. Report of the Institute of Freshwater Research, Drottningholm 59: 21–32.Google Scholar
  38. Fairchild, G.W. 1982. Population responses of plant-associated invertebrates to foraging by largemouth bass fry Micropterus salmoides. Hydrobiologia 96: 169–176.Google Scholar
  39. Fairchild, G.W. 1983. Birth and death rates of a littoral filter feeding microcrustacean, Sida crystallina (Cladocera) in Cohran Lake, Michigan. Internationale Revue der gesamten Hydrobiologie 68: 339–350.Google Scholar
  40. Fedorenko, A.Y. 1975. Instar and species specific diets in two species of Chaoborus. Limnology and Oceanography 20: 238–249.Google Scholar
  41. Fott, J., Desortova, D., and Hrbacek, J. 1980a. A comparison of the growth of flagellates under heavy grazing stress with a continuous culture, pp. 395–401, in Sikyta, B., Fencl, Z., and Polacek, V. (editors), Continuous Cultivations of Microorganisms. Institute of Microbiology, Czechoslovakian Academy of Sciences, Prague.Google Scholar
  42. Fott, J., Pechar, L., and Prazakova, M. 1980. Fish as a factor controlling water quality in ponds. Developments in Hydrobiology 2: 255–261.Google Scholar
  43. Gabriel, W. 1982. Modelling reproductive strategies of Daphnia. Archiv für Hydrobiologie 95: 69–80.Google Scholar
  44. Galbraith, M.G. Jr. 1967. Size-selective predation on Daphnia by rainbow trout and yellow perch. Transactions of the American Fisheries Society 96: 1–10.Google Scholar
  45. Geller, W. 1986. Diurnal vertical migration of zooplankton in a temperate great lake (L. Constance): A starvation avoidance mechanism? Archiv für Hydrobiologie Suppl. 74: 1–60.Google Scholar
  46. Gilbert, J.J. 1967. Asplanchna and postero-lateral spine production in Brachionus calyciflorus. Archiv für Hydrobiologie 64: 1–62.Google Scholar
  47. Gilbert, J.J. 1985. Escape response of the rotifer Polyarthra: a high speed cinematographic analysis. Oecologia (Berlin) 66: 322–331.Google Scholar
  48. Gilbert, J.J. and Waage, J.K. 1967. Asplanchna, Asplanchna-substance and posterolateral spine length variation of the rotifer Brachionus calciflorus in a natural environment. Ecology 48: 1027–1031.Google Scholar
  49. Glasser, J.W. 1978. The effect of predation on prey resource utilization. Ecology 59: 724–732.Google Scholar
  50. Glasser, J.W. 1979. The role of predation in shaping and maintaining the structure of communities. American Naturalist 113: 31–41.Google Scholar
  51. Gliwicz, Z.M. 1963. The influence of the stocking of the Tatra lakes on their biocenosis. Chronmy Przyrode Ojczysta 5: 27–35.Google Scholar
  52. Gliwicz, Z.M. 1977. Food size selection and seasonal succession of filter feeding zooplankton in a eutrophic lake. Ekologia polska 25: 175–225.Google Scholar
  53. Gliwicz, Z.M. 1981. Food and predation in limiting clutch size of cladocerans. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 21: 1562–1566.Google Scholar
  54. Gliwicz, Z.M. 1985. Predation or food limitation: an ultimate reason for extinction of planktonic cladoceran species. Archiv für Hydrobiologie, Beihefte Ergebnisse der Limnologie 21: 419–430.Google Scholar
  55. Gliwicz, Z.M. 1986a. A lunar cycle in zooplankton. Ecology 67: 882–897.Google Scholar
  56. Gliwicz, Z.M. 1986b. Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748.Google Scholar
  57. Gliwicz, Z.M., Ghilarov, A.M., and Pijanowska, J. 1981. Food and predation as major factors limiting two natural populations of Daphnia cucullata Sars. Hydrobiologia 80: 205–218.Google Scholar
  58. Gliwicz, Z.M. and Pijanowska, J. 1988. Predation and resource distribution in shaping behavior of vertical migration in zooplankton. Bulletin of Marine Science 43: 951–965.Google Scholar
  59. Goad, J. 1984. A biomanipulation experiment in Green Lake, Seattle, Washington. Archiv für Hydrobiologie 102: 137–153.Google Scholar
  60. Goldman, C.R., Morgan, M.D., Threlkeld, S.T., and Angeli, N. 1979. Population dynamics analysis of the cladoceran disappearance from Lake Tahoe, California-Nevada. Limnology and Oceanography 24: 289–297.Google Scholar
  61. Green, J. 1967. The distribution and variation of Daphnia lumnholtzi (Crustacea: Cladocera) in relation to fish predation in Lake Albert, East Africa. Journal of Zoology 151: 181–197.Google Scholar
  62. Greene, C.H. 1983. Selective predation in freshwater zooplankton communities. Internationale Revue der gesamten Hydrobiologie 68: 297–315.Google Scholar
  63. Greene, C.H. 1985. Planktivore functional groups and patterns of prey selection in pelagic communities. Journal of Plankton Research 7: 35–40.Google Scholar
  64. Greene, C.H. 1986. Patterns of prey selection: implications of predator foraging tactics. American Naturalist 128: 824–839.Google Scholar
  65. Grygierek, E., Hillbricht-Ilkowska, A., and Spodniewska, I. 1966. The effect of fish on plankton community in ponds. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 16: 1359–1366.Google Scholar
  66. Hairston, N.G. Jr. 1987. Diapause as a predator-avoidance adaptation, pp. 287–290, in Kerfoot, W.C. and Sih, A. (editors), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  67. Hairston, N.G. Jr. and Munns, W.R. Jr. 1984. The timing of copepod diapause as an evolutionary stable strategy. American Naturalist 123: 733–751.Google Scholar
  68. Hairston, N.G. Jr., Walton, W.E., and Li, K.T. 1983. The causes and the consequences of sex-specific mortality in a freshwater copepod. Limnology and Oceanography 28: 935–947.Google Scholar
  69. Hall, D.J. 1964. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45: 94–112.Google Scholar
  70. Hall, D.J., Cooper, W.E., and Werner, E.E. 1970. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnology and Oceanography 15: 839–928.Google Scholar
  71. Hall, D.J., Threlkeld, S.T., Burns, C.W., and Crowley, P.H. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Revue of Ecology and Systematics 7: 177–208.Google Scholar
  72. Hare, L. and Carter, J.C.H. 1987. Zooplankton populations and the diets of three Chaoborus species (Diptera, Chaoboridae) in a tropical lake. Freshwater Biology 17: 275–290.Google Scholar
  73. Hartmann, J. 1983. Two feeding strategies of young fishes. Archiv für Hydrobiologie 96: 496–509.Google Scholar
  74. Hartmann, J. 1986. Interspecific predictors of selected prey of young fishes. Archiv für Hydrobiologie, Beihefte Ergebnisse der Limnologie 22: 373–386.Google Scholar
  75. Hillbricht-Ilkowska, A. and Weglenska, T. 1973. Experimentally increased fish stock in the pond type Lake Warniak. VII. Numbers, biomass and production of zooplankton. Ekologia polska 21: 533–552.Google Scholar
  76. Holling, C.S. 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Canadian Journal of Entomology 91: 293–320.Google Scholar
  77. Hrbáček, J. 1962. Species composition and the amount of zooplankton in relation to the fish stock. Rozpravy Ceskoslovenske Akademie Ved, Rada mathematicko-prirodov-edecka 72 (10): 1–114.Google Scholar
  78. Hrbáček, J. and Novotna-Dvorakova, M. 1965. Plankton of four backwaters related to their size and fish stock. Rozpravy Ceskoslovenske Akademie Ved, Rada mathematickoprirodovedecka 75 (13): 1–65.Google Scholar
  79. Hrbáček, J., Dvorakova, M., Korinek, V., and Prochazkova, L. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 14: 192–195.Google Scholar
  80. Hunter, J.R. 1979. The feeding behavior and ecology of marine fish larvae, in Bardach, J.E. (editor), The Physiological and Behavioral Manipulation of Food Fish as Production and Management Tools.Google Scholar
  81. Hurlbert, W.H. and Mulla, M.S. 1981. Impacts of mosquito fish (Gambusia affinis) predation on plankton communities. Hydrobiologia 83: 125–151.Google Scholar
  82. Hutchinson, B.P. 1971. The effect of fish predation on the zooplankton on ten Adirondack Lakes, with particular reference to the alewife, Alosa pseudoharengus. Transactions of the American Fisheries Society 100: 325–335.Google Scholar
  83. Hutchinson, G.E. 1967. A Treatise on Limnology. Vol. II. Introduction to Lake Biology and the Limnoplankton. John Wiley and Sons, New York, 1115 pp.Google Scholar
  84. Kajak, Z., Dusoge, K., Hillbricht-Ilkowska, A., Pieczynski, E., Prejs, A., Spodniewska, I., and Weglenska, T. 1972. Influence of the artificially increased fish stock on the lake biocenosis. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 18: 228–235.Google Scholar
  85. Kajak, Z. and Rybak, J. 1979. The feeding of Chaoborus flavicans Wiegen (Diptera, Chaoboridae) and its predation on a lake zooplankton. Internationale Revue der gesamten Hydrobiologie 64: 361–378.Google Scholar
  86. Kajak, Z., Rybak, J., and Ranke-Rybicka, B. 1978. Fluctuations in numbers and changes in the distribution of Chaoborus flavicans (Meigen) (Diptera, Chaoboridae) in the eutrophic Mikolajskie Lake and dystrophic Lake Flosek. Ekologia polska 26: 259–272.Google Scholar
  87. Kerfoot, W.C. 1980. Commentary: transparency, body size, and prey conspicuousness, pp. 609–617, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  88. Kerfoot, W.C. 1982. A question of taste: crypsis and warning coloration in freshwater zooplankton communities. Ecology 63: 538–554.Google Scholar
  89. Kerfoot, W.C. 1987. Cascading effects and indirect pathways, pp. 57–70, in Kerfoot, W.C. and Sih, A. (editors), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  90. Kerfoot, W.C., Kellog, D.L. Jr., and Strickler, J.R. 1980. Visual observations of live zooplankters: Evasion, escape and chemical defenses, pp. 10–27, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  91. Lampert, W. 1987. Predictability in lake ecosystems: the role of biotic interactions. Ecological Studies 61: 333–346.Google Scholar
  92. Lampert, W. 1988. The relative importance of food limitation and predation in the seasonal cycle of two Daphnia species. Internationale Vereinigung fur theoretische und angewandte Limnologie, Verhandlungen 23: 713–718Google Scholar
  93. Lampert, W. and Schober, U. 1978. Das regelmassige Auftreten von Fruhjahrs Algen- maximum und “Klarwasserstadium” im Bodensee als Folge von climatischen Bedingungen und Wechselwirchungen zwischen Phytound Zooplankton. Archiv für Hydrobiologie 82: 364–386.Google Scholar
  94. Langeland, A. 1982. Interactions between zooplankton and fish in a fertile lake. Holarctic Ecology 5: 273–310.Google Scholar
  95. Larsson, P., Johnsen, G., and Steigen, A.L. 1985. An experimental study of the summer decline in a Daphnia population. Internationale Vereinigung fur theoretische und an-gewandte Limnologie, Verhandlungen 22: 3131–3136.Google Scholar
  96. Lazzaro, X. 1987. A review of planktivorous fishes: Their evolution, feeding behaviors, selectivities and impacts. Hydrobiologia 146: 97–167.Google Scholar
  97. Lehtovaara, A. and Sarvala, J. 1984. Seasonal dynamics of total biomass and species composition of zooplankton in the littoral of an oligotrophic lake. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 22: 805–810.Google Scholar
  98. Lynch, M. 1977. Fitness and optimal body size in zooplankton populations. Ecology 58: 763–774.Google Scholar
  99. Lynch, M. 1979. Predation, competition, and zooplankton community structure. Limnology and Oceanography 24: 253–272.Google Scholar
  100. Lynch, M., Monson, B., Sandheinrich, M., and Weider, L. 1981. Size specific mortality rates in zooplankton populations. Internationale Vereinigung fur theoretische und angewandte Limnologie, Verhandlungen 21: 363–368.Google Scholar
  101. Lynch, M. and Shapiro, J. 1981. Predation, enrichment and phytoplankton community structure. Limnology and Oceanography 26: 86–102.Google Scholar
  102. Manning, B.J., Kerfoot, W.C., and Berger, E.M. 1978. Phenotypes and genotypes in cladoceran populations. Evolution 32: 365–374.Google Scholar
  103. Mellors, W.K. 1975. Selective predation on ephippial Daphnia and the resistance of ephippial eggs to digestion. Ecology 56: 974–980.Google Scholar
  104. Mills, E.L. and Forney, J.L. 1983. Impact on Daphnia pulex of predation by yellow perch in Oneida Lake, New York. Transactions of the American Fisheries Society 112: 154–161.Google Scholar
  105. Mills, E.L., Forney, J.L., and Wagner, K.J. 1987. Fish predation and its cascading effect on the Oneida Lake food chain, pp. 118–131, in Kerfoot, W.C. and Sih, A. (editors), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  106. Miracle, M.R. 1974. Niche structure in freshwater zooplankton: a principal components approach. Ecology 55: 1306–1316.Google Scholar
  107. Moore, M. and Gilbert, J.J. 1987. Age-specific Chaoborus predation on rotifer prey. Freshwater Biology 17: 223–236.Google Scholar
  108. Morgan, M.D., Threlkeld, S.T., and Goldman, C.R. 1978. Impact of the introduction of kokanee (Oncorhynchus nerka) and oppossum shrimp (Mysis relicta) on a subalpine lake. Journal of Fisheries Research Board of Canada 35: 1572–1579.Google Scholar
  109. Morin, P.J. 1987. Salamander predation, prey facilitation, and seasonal succession in microcrustacean communities, pp. 174–187, in Kerfoot, W.C. and Sih, A. (editors), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  110. Murtaugh, P.A. 1981. Size-selective predation on Daphnia by Neomysis mercedis. Ecology 62: 894–900.Google Scholar
  111. Nakashima, B.S. and Leggett, W.C. 1978. Daily ration of yellow perch (Perca flavescens) from Lake Memphremagog, Quebec-Vermont, with a comparison of methods for in situ determinations. Journal of Fisheries Research Board of Canada 35: 1597–1603.Google Scholar
  112. Nauwerck, A. 1963. Die Beziehungen zwischen Zooplankton und Phytoplakton im See Erken. Symbolae Botanicae Upsalienses 17 (5): 1–163.Google Scholar
  113. Neill, W.E. 1975. Experimental studies of microcrustacean competition, community composition and efficiency of resource utilization. Ecology 56: 809–826.Google Scholar
  114. Neill, W.E. 1981. Impact of Chaoborus predation upon the structure and dynamics of a crustacean zooplankton community. Oecologia (Berlin) 48: 164–177.Google Scholar
  115. Neill, W.E. and Peacock, A. 1980. Breaking the bottleneck: interactions of invertebrate predators and nutrients in oligotrophic lakes, pp. 715–724, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  116. Nilssen, J.P. 1977. Cryptic predation and the demographic strategy of two limnetic cyclopoid copepods. Memorie del Istituto italiano di idrobiologia 34: 187–196.Google Scholar
  117. Nilsson, N.A. and Pejler, B. 1973. On the relation between fish, fauna and zooplankton composition in North Swedish lakes. Report of the Institute of Freshwater Research, Drottningholm 53: 51–76.Google Scholar
  118. Northcote, T.G. and Clarotto, J. 1975. Limnetic macrozooplankton and fish predation in some coastal British Columbia lakes. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 19: 2378–2393.Google Scholar
  119. Northcote, T.G., Walters, J., and Hume, J.M.B. 1978. Initial impacts of experimental fish introductions onthe macrozooplankton of small oligotrophic lakes. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 20: 2003–2012.Google Scholar
  120. Nyberg, P. 1976. Production and food consumption of perch in two Swedish forest lakes. Scripta Limnologica Upsaliensia 421, Klotenprojekted Raport 6: 1–97.Google Scholar
  121. O’Brien, WJ. 1987. Planktivory by freshwater fish: thrust and parry in the pelagia, pp. 3–16, in Kerfoot, W.C. and Sih, A. (editors), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  122. O’Brien, W.J., Kettle, D., and Riessen, H. 1979. Helmets and invisible armor: Structures reducing predation from tactile and visual planktivores. Ecology 60: 287–294.Google Scholar
  123. O’Brien, W.J. and Vinyard, G.L. 1978. Polymorphism and predation: The effect of invertebrate predation on the distribution of two varieties of Daphnia carinata in South India ponds. Limnology and Oceanography 23: 452–460.Google Scholar
  124. Paine, R.T. 1966. Food web complexity and species diversity. American Naturalist 100: 65–75.Google Scholar
  125. Papinska, K. 1988. The effect of fish predation on Cyclops life cycle. Hydrobiologia 167/ 168: 449–453.Google Scholar
  126. Patalas, K. 1963. Seasonal changes in pelagic crustacean plankton in six lakes of Wegorzewo district. Roczniki Nauk Rolniczych 82: 209–234.Google Scholar
  127. Pijanowska, J. 1985. Antipredator defense mechanisms in zooplankton. Wiadomosci ekologiczne 31: 123–172 (in Polish with English summary).Google Scholar
  128. Pijanowska, J. and Dawidowicz, P. 1987. The lack of vertical migrations in Daphnia: the effect of homogenously distributed food. Hydrobiologia 148: 175–181.Google Scholar
  129. Post, J.R. and McQueen, D.J. 1987. The impact of planktivorous fish on the structure of plankton community. Freshwater Biology 17: 79–89Google Scholar
  130. Pourriot, R. 1983. Influence selective de la predation sur la structure et la dynamique de zooplancton d’eau douce. Acta Oecologica 4: 13–25.Google Scholar
  131. Riessen, H.P. 1984. The other side of cyclomorphosis: Why Daphnia lose their helmets. Limnology and Oceanography 29: 1123–1127.Google Scholar
  132. Riessen, H.P. 1985. Exploitation of prey seasonality by a planktonic predator. Canadian Journal of Zoology 63: 1729–1732.Google Scholar
  133. Richards, R.C., Goldman, C.R., Frantz, T.C., and Wickwire, R. 1975. Where have all the Daphnia gone? The decline of a major cladoceran in Lake Tahoe. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 19: 835–842.Google Scholar
  134. Ringelberg, J. 1980. Introductory remarks: Causal and teleological aspects of diurnal vertical migration, pp. 65–68, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  135. Rosenthal, H. and Hempel, G. 1970. Experimental studies in feeding and food requirements of herring larvae (Clupea harengus L.), pp. 344–364, in Teele, H. (editor), Marine Food Chains. Oliver and Boyd, Edinburgh.Google Scholar
  136. Sandstrom, O. 1980. Selective feeding by Baltic herring. Hydrobiologia 69: 199–207.Google Scholar
  137. Scavia, D., Fahnenstiel, G.L., Evans, M.S., Jude, D.J., and Lehman, J.T. 1986. Influence of salmonid predation and weather on long-term water quality trends in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 43: 435–443.Google Scholar
  138. Seitz, A. 1977. Die Bedeutung von Umweltfactoren, Konkurenz und Rauber-Beute-Beziehungen für die Koexistenz drier Daphnienarten. Ph.D. Thesis, Universitát München, 160 pp.Google Scholar
  139. Shapiro, J. and Wright, D.I. 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biology 14: 371–383.Google Scholar
  140. Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  141. Stasiak, I. 1981. Reconstruction of history of Tatra lakes zooplankton from sediment cores. M. Sc. Thesis, University of Warsaw, 40 pp.Google Scholar
  142. Stearns, S.C. 1976. Life-history tactics: a review of the ideas. Quarterly Review of Biology 51: 3–47.PubMedGoogle Scholar
  143. Stemberger, R.S. and Evans, M.S. 1984. Rotifer seasonal succession and copepod predation in Lake Michigan. Journal of Great Lakes Research 10: 417–428.Google Scholar
  144. Stenson, J.A.E. 1978. Relations between vertebrate and invertebrate zooplankton predators in some arctic lakes. Astarte 11: 21–26.Google Scholar
  145. Stenson, J.A.E. 1987. Variation in capsule size of Holopedium gibberum (Zaddach): a response to invertebrate predation. Ecology 68: 928–934.Google Scholar
  146. Stenson, J.A.E., Bohlin, T., Henrickson, L., Nilsson, B.I., Nyman, H.G., Oscarson, H.G., and Larsson, P. 1978. Effects of fish removal from a small lake. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 20: 794–801.Google Scholar
  147. Stich, H.B. and Lampert, W. 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.Google Scholar
  148. Stich, H.B. and Lampert, W. 1984. Growth and reproduction of migrating and non-migrating Daphnia species under simulated food and temperature conditions of- diurnal vertical migrations. Oecologia (Berlin) 61: 192–196.Google Scholar
  149. Strickler, J.R. and Twombly, S. 1975. Reynolds number, diapause and predatory copepods. Internationale Vereinigung fiir theoretische und angewandte Limnologie, Verhandlungen 19: 2943–2950.Google Scholar
  150. Stross, R.G. 1973. Zooplankton reproduction and water blooms, pp. 467–478, in Glass, G.A. (editor), Bioassay Techniques and Environmental Chemistry. Environmental Protection Agency, Duluth, Minnesota.Google Scholar
  151. Swift, M.C. and Fedorenko, A.Y. 1975. Some aspects of prey capture by Chaoborus larvae. Limnology and Oceanography 20: 418–425.Google Scholar
  152. Swift, M.C. and Forward, R.B. Jr. 1981. Chaoborus prey capture efficiency in the light and dark. Limnology and Oceanography 26: 416–466.Google Scholar
  153. Szlauer, L. 1965. The refuge ability of plankton animals before plankton eating animals. Polskie Archiwum Hydrobiologii 13: 89–95.Google Scholar
  154. Szlauer, L. 1968. Investigations upon ability in plankton Crustacea to escape the net. Polskie Archiwum Hydrobiologii 16: 78–86.Google Scholar
  155. Tessier, A.J. 1986. Comparative population regulation of two planktonic Cladocera (Holopedium gibberum and Daphnia catawba). Ecology 67: 285–302.Google Scholar
  156. Thorp, J.H. 1986. Two distinct roles for predators in freshwater assemblages. Oikos 47: 75–82.Google Scholar
  157. Threlkeld, S.T. 1979. The midsummer dynamics of two Daphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.Google Scholar
  158. Threlkeld, S.T. 1981. The recolonization of Lake Tahoe by Bosmina longirostris: Evaluating the importance of reduced Mysis relicta population. Limnology and Oceanography 26: 433–444.Google Scholar
  159. Tschumi, P. A., Bangerter, B., and Zbaren, D. 1982. Zehn Jahre limnologische Forschung am Bielersee (1972–1982). Vierteljahresschrift der Naturforschenden Gesellschaft Zurich 127: 337–355.Google Scholar
  160. Vanni, M.J. 1986. Fish predation and zooplankton demography: indirect effects. Ecology 67: 337–354.Google Scholar
  161. Vanni, M.J. 1987. Effects of food availability and fish predation on a zooplankton community. Ecological Monographs 57: 61–88.Google Scholar
  162. Vijverberg, J. and van Densen, W.L.T. 1984. The role of fish in the food web of Tjukemeer, The Netherlands. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 22: 891 - 896.Google Scholar
  163. Wiljanen, M. and Holopainen, I.J. 1982. Population density of perch (Perca fluviatilis L) at egg, larval and adult stages in the dysoligotrophic Lake Soumunjarvi, Finland. Annales Zoologici Fennici 19: 39–46.Google Scholar
  164. Vuorinen, I., Rajasilta, M., and Salo, J. 1983. Selective predation and habitat shift in a copepod species—support for the predation hypothesis. Oecologia (Berlin) 59: 62–64.Google Scholar
  165. Ware, D.M. 1973. Risk of epibenthic prey to predationby rainbow trout (Salmo gairdnen). Journal of Fisheries Research Board of Canada 30: 786–797.Google Scholar
  166. Weglenska, T., Dusoge, K., Ejsmont-Karabin, J., Spodniewska, I., and Zachwieja, J. 1979. Effect of winter kill and changing fish stock on the biocenose of the pond- type Lake Wamiak. Ekologia polska 27: 39–70.Google Scholar
  167. Weider, L.J. 1984. Spatial heterogeneity of Daphnia genotypes: Vertical migration and habitat partitioning. Limnology and Oceanography 29: 225–235.Google Scholar
  168. Werner, E.E. and Gilliam, J.F. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15: 393–425.Google Scholar
  169. Wilson, D.S. 1975. The adequacy of body size as a niche difference. American Naturalist 109: 769–784.Google Scholar
  170. Wong, B. and Ward, F.J. 1972. Size selection of Daphnia pulicaria by yellow perch (Perca flavescens) fry in West Blue Lake, Manitoba. Journal of Fisheries Research Board of Canada 29: 1761–1764.Google Scholar
  171. Wright, J.C. 1965. The population dynamics and production of Daphnia in Canyon Ferry Reservoir, Montana. Limnology and Oceanography 10: 583–590.Google Scholar
  172. Wright, D.I. and O’Brien, W.J. 1982. Differential location of Chaoborus larvae and Daphnia by fish: The importance of motion and visible size. American Midland Naturalist 108: 68–73.Google Scholar
  173. Wright, D.I. and O’Brien, W.J. 1984. The development and field test of tactical model of the planktivorous feeding of white crappie (Pomoxis annularis). Ecological Monographs 54: 65–98.Google Scholar
  174. Zaret, T.M. 1972a. Predator-prey interaction in a tropical lacustrine ecosystem. Ecology 53: 248–257.Google Scholar
  175. Zaret, T.M. 1972b. Predators, invisible prey, and the nature of polymorphism in the Cladocera (class Crustacea). Limnology and Oceanography 17: 171–184.Google Scholar
  176. Zaret, T.M. 1978. A predation model of zooplankton community structure. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 20: 2496–2500.Google Scholar
  177. Zaret, T.M. 1980. Predation and Freshwater Communities. Yale University Press, New Haven, 180 pp.Google Scholar
  178. Zaret, T.M. and Kerfoot, W.C. 1975. Fish predation on Bosmina longirostris: body-size selection versus visibility selection. Ecology 56: 232–237.Google Scholar
  179. Zaret, T.M. and Suffern, J.S. 1976. Vertical migration in zooplankton as a predator-avoidance mechanism. Limnology and Oceanography 21: 804–813.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York London Paris Tokyo 1989

Authors and Affiliations

  • Z. Maciej Gliwicz
    • 1
  • Joanna Pijanowska
    • 1
  1. 1.Department of HydrobiologyUniversity of WarsawWarsawPoland

Personalised recommendations