The Role of Grazers in Phytoplankton Succession

  • Robert W. Sterner
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

At times, freshwater zooplankton consume phytoplankton populations at rates similar to or faster than that at which they are growing (Hargrave and Geen, 1970; Gulati, 1975; Horn, 1981; Persson, 1985; Børsheim and Anderson, 1987). Such high losses certainly must help direct seasonal succession as they force a subset of algal species to suffer high mortality rates. Some studies have concluded that losses in general (Kalff and Knoechel, 1978; Reynolds, et al., 1982) and grazing losses in particular (Porter, 1973, 1976, 1977; Lynch and Shapiro, 1981; Crumpton and Wetzel, 1982; Kerfoot, 1987) are important in seasonal succession. In addition, the influence of zooplankton on algal succession is not limited to their selective effect on algal numbers. Zooplankton also interact indirectly with phytoplankton by making some nutrients more available to them (Gliwicz, 1975; Lehman, 1980a, b; Redfield, 1980; Lehman and Scavia, 1982; Sterner, 1986a). Zooplankton thus act not only as predators in the classic sense, but they also have an effect on the competition among algae (Elser et al., 1988).

Keywords

Cellulose Chlorophyll Urea Respiration Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P. 1987. Indirect interactions between species that share a predator: varieties of indirect effects, pp. 38–54, in Kerfoot, W.C. and Sih, A. (editors), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  2. Axler, R.P., Redfield, G.W., and Goldman, C.R. 1981. The importance of regenerated nitrogen to phytoplankton productivity in a subalpine lake. Ecology 62: 345–354.CrossRefGoogle Scholar
  3. Barlow, J.P. and Bishop, J.W. 1965. Phosphate regeneration by zooplankton in Cayuga Lake. Limnology and Oceanography 10 (supplement); R15–R25.Google Scholar
  4. Bartell, S.M. and Kitchell, J.F. 1978. Seasonal impact of planktivory on phosphorus release by Lake Wingra zooplankton. Internationale Vereinigung für Theoritische und Angewandte Limnologie, Verhandlungen 20: 466–474.Google Scholar
  5. Bartram, W.L. 1980. Experimental development of a model for the feeding of neritic copepods on phytoplankton. Journal of Plankton Research 3: 1525–1551.Google Scholar
  6. Bergquist, A.M. and Carpenter, S.R. 1986. Limnetic herbivory: effects on phytoplankton populations and primary production. Ecology 67: 1351–1360.CrossRefGoogle Scholar
  7. Bergquist, A.M., Carpenter, S.R., and Latino, J.C. 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnology and Oceanography 30: 1037–1045.CrossRefGoogle Scholar
  8. Berman, M.S. and Richman, S. 1974. The feeding behavior of Daphnia pulex from Lake Winnebago, Wisconsin. Limnology and Oceanography 19: 105–109.CrossRefGoogle Scholar
  9. Bidigare, R.R. 1983. Nitrogen excretion by marine zooplankton, pp. 385–409, in Carpenter, E.J. and Capone, D.G. (editors), Nitrogen in the Marine Environment. Academic Press, New York.Google Scholar
  10. Bidigare, R.R. and King, F.D. 1981. The measurement of glutamate dehydrogenase activity in Praunus flexuosus and its role in the regulation of ammonium excretion. Comparative Biochemistry and Physiology 70B: 409–413.Google Scholar
  11. Blažka, P. 1966. The ratio of crude protein, glycogen and fat in the individual steps of the production chain. Hydrobiological Studies 1: 395–408.Google Scholar
  12. Blažka, P. 1967. Physiological basis of secondary production, pp. 222–228, in Edmondson, W.T. and Winberg, G.C. (editors), Secondary Productivity in Fresh Waters. IBP Handbook 17. Blackwell, Oxford.Google Scholar
  13. Blažka, P., Brandl, Z., and Prochazkova, L. 1982. Oxygen consumption and ammonia and phosphate excretion in pond zooplankton. Limnology and Oceanography 27: 294–303.CrossRefGoogle Scholar
  14. Bleiwas, A.H. and Stokes, P.M. 1985. Collection of large and small particles by Bosmina. Limnology and Oceanography 30: 1090–1092.CrossRefGoogle Scholar
  15. Boavida, M.J. and Heath, R.T. 1984. Are the phosphatases released by Daphnia magna components of its food? Limnology and Oceanography 29: 641–644.CrossRefGoogle Scholar
  16. Bogdan, K.G. and Gilbert, J.J. 1982. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: Clearance rates, selectivities, and contributions to community grazing. Limnology and Oceanography 27: 918–934.CrossRefGoogle Scholar
  17. Bogdan, K.G. and Gilbert, J.J. 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Sciences, U.S.A. 81: 6427–6431.CrossRefGoogle Scholar
  18. Bogdan, K.G. and Gilbert, J.J. 1987. Quantitative comparison of food niches in some freshwater zooplankton. A multi-tracer cell approach. Oecologia (Berlin) 72: 331–340.Google Scholar
  19. Bogdan, K.G. and McNaught, D.C. 1975. Selective feeding by Daphnia and Diaptomus. Internationale Vereinigung für Theroetische und Angewandte Limnologie. Verhandlungen. 19: 2935–2942.Google Scholar
  20. Børsheim, K.Y. and Anderson, S. 1987. Grazing and food size selection by crustacean zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. Journal of Plankton Research 9: 367–379.CrossRefGoogle Scholar
  21. Boyd, C.N. 1976. Selection of particle sizes by filter-feeding copepods: a plea for reason. Limnology and Oceanography 21: 175–180.CrossRefGoogle Scholar
  22. Brendelberger, H. 1985. Filter mesh-size and retention efficiency for small particles: comparative studies with Cladocera. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 135–146.Google Scholar
  23. Brendelberger, H. and Geller, W. 1985. Variability of filter structures in eight Daphnia species: mesh sizes and filtering areas. Journal of Plankton Research 7: 473–486.CrossRefGoogle Scholar
  24. Brendelberger, H., Herbeck, M., Lang, H., and Lampert, W. 1987. Daphnia’s filters are not solid walls. Archiv für Hydrobiologie 107: 197–202.Google Scholar
  25. Briand, F. and McCauley, E. 1978. Cybernetic mechanisms in lake plankton systems: how to control undesirable algae. Nature 273: 228–230.CrossRefGoogle Scholar
  26. Burns, C.W. 1968. The relationship between body size of filter-feeding cladocera and the maximum size of particle ingested. Limnology and Oceanography 13: 675–678.CrossRefGoogle Scholar
  27. Burns, C.W. and Rigler, F.H. 1967. Comparison of filtering rates of Daphnia rosea in lake water and suspensions of yeast. Limnology and Oceanography 12: 492–502.CrossRefGoogle Scholar
  28. Butler, E.I., Corner, E.D.S., and Marshall, S.M. 1969. On the nutrition and metabolism of zooplankton. VI. Feeding efficiency of Calanus in terms of nitrogen and phosphorus. Journal of the Marine Biological Association of the U.K. 49: 977–1001.CrossRefGoogle Scholar
  29. Canfield, D.E. Jr. and Watkins, C.E. III. 1984. Relationships between zooplankton abundance and chlorophyll a concentrations in Florida lakes. Journal of Freshwater Ecology 2: 335–344.CrossRefGoogle Scholar
  30. Carpenter, S.R. and Kitchell, J.F. 1984. Plankton community structure and limnetic primary production. The American Naturalist 124: 159–172.CrossRefGoogle Scholar
  31. Carpenter, S.R. and Kitchell, J.F. 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.CrossRefGoogle Scholar
  32. Carpenter, S.R. and Kitchell, J.F. 1987a. The temporal scale of variance in limnetic primary productivity. The American Naturalist 129: 417–433CrossRefGoogle Scholar
  33. Carpenter, S.R. and Kitchell, J.F. 1987b. Analysis of temporally variable processes in lake ecosystems, pp. 141–153, in Basic Issues in Great Lakes Research. Special Report No. 123, Great Lakes Research Division, Ann Arbor, MI.Google Scholar
  34. Chow-Frazer, P. 1986. An empirical model to predict in situ grazing rates of Diaptomus minutus Lilljeborg on small algal particles. Canadian Journal of Fisheries and Aquatic Sciences 43: 1065–1070.CrossRefGoogle Scholar
  35. Chow-Fraser, P. and Knoechel, R. 1985. Factors regulating in situ filtering rates of Cladocera. Canadian Journal of Fisheries and Aquatic Sciences 42: 567–576.CrossRefGoogle Scholar
  36. Christoffersen, K. and Jespersen, A.-M. 1986. Gut evacuation rates and ingestion rates of Eudiaptomus graciloides measured by means of the gut fluorescence method. Journal of Plankton Research 8: 973–983.CrossRefGoogle Scholar
  37. Conover, R.J., Durvasula, R., Roy, S., and Wang, R. 1986. Probable loss of chlorophyll- derived pigments during passage through the gut of zooplankton and some of the consequences. Limnology and Oceanography 31: 878–887.CrossRefGoogle Scholar
  38. Cooper, D.C. 1973. Enhancement of net primary productivity by herbivore grazing in aquatic laboratory microcosms. Limnology and Oceanography 18: 31–37.CrossRefGoogle Scholar
  39. Corner, E.D.S. and Davies, A.G. 1971. Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Advances in Marine Biology 9: 101–204.CrossRefGoogle Scholar
  40. Corner, E.D.S., Head, R.N., and Kilvington, C.C. 1972. On the nutrition and metabolism of zooplankton. VIII. The grazing of Biddulphia cells by Calanus helgolandicus. Journal of the Marine Biological Association of the U.K. 52: 847–861.CrossRefGoogle Scholar
  41. Corner, E.D.S., Head, R.N., Kilvington, C.C., and Pennycuick, L. 1976. On the nutrition and metabolism of zooplankton. X. Quantitative aspects of Calanus heloglandiscus feeding as a carnivore. Journal of the Marine Biological Association of the U.K. 56: 345–358.CrossRefGoogle Scholar
  42. Coughlan, J. 1969. The estimation of filtering rate from the clearance of suspension. Marine Biology 2: 356–358.CrossRefGoogle Scholar
  43. Crumpton, W. and Wetzel, R.G. 1982. Effects of differential growth and mortality in the seasonal succession of phytoplankton populations in Lawrence Lake, Michigan. Ecology 63: 1729–1739.CrossRefGoogle Scholar
  44. Currie, D.J. 1984. Microscale nutrient patches: do they matter to the phytoplankton? Limnology and Oceanography 29: 211–213.CrossRefGoogle Scholar
  45. Cushing, D.H. 1976. Grazing in Lake Erken. Limnology and Oceanography 21: 349–356.CrossRefGoogle Scholar
  46. Dawidowicz, P. and Gliwicz, Z.M. 1987. Biomanipulation. III. The role of direct and indirect relationship between phytoplankton and zooplankton. Wiadomosci Ekologiczne 33: 259–277.Google Scholar
  47. DeMott, W.R. 1982. Feeding selectivities and relative ingestion rate of Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.CrossRefGoogle Scholar
  48. DeMott, W.R. 1985. Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 125–134.Google Scholar
  49. DeMott, W.R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia (Berlin) 69: 334–340.Google Scholar
  50. DeMott, W.R. and Kerfott, W.C. 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.CrossRefGoogle Scholar
  51. Downing, J.A. 1981. In situ foraging responses of three species of littoral cladocerans. Ecological Monographs 51: 85–103.CrossRefGoogle Scholar
  52. Droop, M.R. 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology 9: 264–272.Google Scholar
  53. Duarte, C.M., Agusti, S., and Peters, H. 1987. An upper limit to the abundance of aquatic organisms. Oecologia (Berlin) 74: 272–276.Google Scholar
  54. Dumont, H.J. 1977. Biotic factors in the population dynamics of rotifers. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 8: 98–122.Google Scholar
  55. Ejsmont-Karabin, J. 1983. Ammonia nitrogen and inorganic phosphorus excretion by the plartktonic rotifers. Hydrobiologia 104: 231–236.CrossRefGoogle Scholar
  56. Ejsmont-Karabin, J. 1984. Phosphorus and nitrogen excretion by lake zooplankton (rotifers and crustaceans) in relationship to individual body weights of the animals, ambient temperature and presence or absence of food. Ekologia Polska 32: 3–42.Google Scholar
  57. Ejsmont-Karabin, J., Bownik-Dylinska, L., and Godlewska-Lipowa, W.A. 1983. Biotic structure and processes in the lake system of R. Jorka watershed (Masurian Lakeland, Poland) VII. Phosphorus and nitrogen regeneration by zooplankton as the mechanism of the nutrient supplying for bacterio- and phytoplankton. Ekologia Polska 31: 719–746.Google Scholar
  58. Elder, R.G. and Parker, M. 1984. Growth response of a nitrogen fixer (Anabaena flos- aquae, Cyanophyceae) to low nitrate. Journal of Phycology 20: 296–301.CrossRefGoogle Scholar
  59. Elser, J.J., Elser, M.M., MacKay, N., and Carpenter, S.R. 1988. Zooplankton-mediated transitions between N- and P-limited algal growth. Limnology and Oceanography 33: 1–14.CrossRefGoogle Scholar
  60. Elser, J.J., Goff, N.C., MacKay, N.A., St. Amand, A.L., Elser, M.M., and Carpenter, S.R. 1987. Species-specific algal responses to zooplankton: experimental and field observations in three nutrient-limited lakes. Journal of Plankton Research 9: 699–717.CrossRefGoogle Scholar
  61. Fahnenstiel, G.L. and Scavia, D. 1986. Dynamics of Lake Michigan phytoplankton: recent changes in surface and deep communities. Canadian Journal of Fisheries and Aquatic Sciences 44: 499–508.CrossRefGoogle Scholar
  62. Friedman, M.M. 1980. Comparative morphology and functional significance of co- pepod receptors and oral structures, pp. 185 - 197, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover.Google Scholar
  63. Friedman, M.M. and Strickler, J.R. 1975. Chemoreception and feeding in calanoid copepods. Proceedings of the National Academy of Sciences USA 72: 4185–4188.CrossRefGoogle Scholar
  64. Frost, B.W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography 17: 805–815.CrossRefGoogle Scholar
  65. Frost, B.W. 1975. A threshold feeding behavior in Calanus pacificus. Limnology and Oceanography 20: 263–266.CrossRefGoogle Scholar
  66. Fryer, G. 1987. The feeding mechanisms of the Daphniidae (Crustacea: Cladocera): recent suggestions and neglected considerations. Journal of Plankton Research 9: 419–432.CrossRefGoogle Scholar
  67. Fulton, R.S. III and Paerl, H.W. 1987. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32: 634–644.CrossRefGoogle Scholar
  68. Ganf, G.G. and Blažka, P. 1974. Oxygen uptake, ammonia and phosphate excretion by zooplankton of a shallow equatorial lake (Lake George, Uganda). Limnology and Oceanography 19: 313–325.CrossRefGoogle Scholar
  69. Ganf, G.G. and Shiel, R.J. 1985a. Particle capture by Daphnia carinata. Australian Journal of Marine and Freshwater Research 36: 371–381.CrossRefGoogle Scholar
  70. Ganf, G.G. and Shiel, R.J. 1985b. Feeding behavior and limb morphology of two cladocerans with small intersetular distances. Australian Journal of Marine and Freshwater Research 36: 69–86.CrossRefGoogle Scholar
  71. Gardner, W.S. and Miller, W.H. III. 1981. Intracellular composition and net release of free amino acids in Daphnia magna. Canadian Journal of Fisheries and Aquatic Sciences 38: 157–162.CrossRefGoogle Scholar
  72. Gardner, W.S. and Paffenhofer, G.-A. 1982. Nitrogen regeneration by the subtropical marine copepod Eucalanus pileatus. Journal of Plankton Research 4: 725–734.CrossRefGoogle Scholar
  73. Gardner, W.S. and Scavia, D. 1981. Kinetic examination of N release by zooplankters. Limnology and Oceanography 26: 801–810.CrossRefGoogle Scholar
  74. Geller, W. and Miiller, H. 1981. The filtration apparatus of cladocera: filter mesh-sizes and their implications of food selectivity. Oecologia (Berlin) 49: 316–321.Google Scholar
  75. Gerritsen, J. and Porter, K.G. 1982. The role of surface chemistry in filter feeding by zooplankton. Science 216: 1225–1227.PubMedCrossRefGoogle Scholar
  76. Gilbert, J.J. and Bogdan, K.G. 1984. Rotifer grazing: in situ studies on selectivity and rates, pp. 97–133, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  77. Glasser, J.W. 1984. Analysis of zooplankton feeding experiments: some methodological considerations. Journal of Plankton Research 6: 553–569.CrossRefGoogle Scholar
  78. Gliwicz, Z.M. 1969. Studies on the feeding of pelagic zooplankton in lakes of varying trophy. Ekologia Polska A 17: 663–707.Google Scholar
  79. Gliwicz, Z.M. 1975. Effect of zooplankton grazing on photosynthetic activity and com-position of phytoplankton. Internationale Vereinigung fur Theroetische und Angewandte Limnologie. Verhandlungen 19: 1490–1497.Google Scholar
  80. Gliwicz, Z.M. 1977. Food size selection and seasonal succession of filter feeding zoo-plankton in an eutrophic lake. Ekologia Polska 25: 179–225.Google Scholar
  81. Gliwicz, Z.M. 1980. Filtering rates, food size selection, and filtering rates in cladocerans—another aspect of interspecific competition in filter-feeding zooplankton, pp. 282–291, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover.Google Scholar
  82. Gliwicz, Z.M. and Siedlar, E. 1980. Food size limitation and algae interfering with food collection in Daphnia. Archiv für Hydrobiologie 88: 155–177.Google Scholar
  83. Goldman, J.C. 1984. Oceanic nutrient cycles, pp.-137–170, in Fasham, M.J. (editor), Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum Press, New York.Google Scholar
  84. Goldman, J.C. and Glibert, P.M. 1982. Comparative rapid ammonium uptake by four species of marine phbytoplankton. Limnology and Oceanography 27: 814–827.CrossRefGoogle Scholar
  85. Goldman, J.C., McCarthy, J.J., and Peavey, D.G. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.CrossRefGoogle Scholar
  86. Gophen, M. and Geller, W. 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia (Berlin) 64: 408–412.Google Scholar
  87. Grant, P.R. 1986. Interspecific competition in fluctuating environments, pp. 173–191 in Diamond, J. and Case, T.J. (editors), Community Ecology. Harper and Row, New York.Google Scholar
  88. Gulati, R.D. 1975. A study on the role of herbivorous zooplankton community as primary consumers of phytoplankton in Dutch lakes. Internationale Vereinigung fur Theoritische und Angewandte Limnologie. Verhandlungen 19: 1202–1210.Google Scholar
  89. Gulati, R.D. 1984. The zooplankton and its grazing rate as measures of trophy in the Loosdrecht Lakes. Internationale Vereinigung für Theoritische und Angewandte Limnologie. Verhandlungen 22: 863–867.Google Scholar
  90. Gulati, R.D. 1985. Zooplankton grazing methods using radioactive tracers: technical problems. Hydrobiological Bulletin 19: 61–69.CrossRefGoogle Scholar
  91. Gulati, R.D., Siewertsen, K., and Postema, G. 1982. The zooplankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95: 127–163.CrossRefGoogle Scholar
  92. Haney, J.F. 1971. An in situ method for the measurement of zooplankton grazing rates. Limnology and Oceanography 16: 970–977.CrossRefGoogle Scholar
  93. Haney, J.F. 1973. An in situ examination of the grazing activities of natural zooplankton communities. Archiv für Hydrobiologie 72: 87–132.Google Scholar
  94. Haney, J.F. 1985. Regulation of cladoceran filtering rates in nature by body size, food concentration, and diel feeding patterns. Limnology and Oceanography 30: 397–411.CrossRefGoogle Scholar
  95. Hanson, J.M. and Peters, R.H. 1984. Empirical prediction of zooplankton and profundal macrobenthos biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 41: 439–445.CrossRefGoogle Scholar
  96. Hargrave, B.T. and Geen, G.H. 1968. Phosphorus excretion by zooplankton. Limnology and Oceanography 13: 332–342.CrossRefGoogle Scholar
  97. Hargrave, B.T. and Geen, G.H. 1970. Effects of copepod grazing on two natural phy-toplankton communities. Journal of the Fisheries Research Board of Canada 27: 1395–1403.CrossRefGoogle Scholar
  98. Harris, E. 1959. The nitrogen cycle in Long Island Sound. Bulletin of the Bingham Oceanographic Collection 17: 31–65.Google Scholar
  99. Harris, E. and Riley, G.A. 1956. Oceanography of Long Island Sound, 1952–1954. VIII. Chemical composition of the plankton. Bulletin of the Bingham Oceanography Collection 15: 315–323.Google Scholar
  100. Harris, G.P. 1986. Phytoplankton Ecology. Structure, Function, and Fluctuation. Chapman and Hall, New York.CrossRefGoogle Scholar
  101. Hart, R.C. 1986. Aspects of the feeding ecology of turbid water zooplankton. In situ studies of community filtration rates in silt-laden Lake le Roux, Orange River, South Africa. Journal of Plankton Research 8: 401–426.Google Scholar
  102. Havens, K. and DeCosta, J. 1985. An analysis of selective herbivory in an acid lake and its importance in controlling phytoplankton community structure. Journal of Plankton Research 7: 207–222.CrossRefGoogle Scholar
  103. Hessen, D.O. 1985. Filtering structures and particle size selection in coexisting cladocera. Oecologia (Berlin) 66: 368–372.Google Scholar
  104. Holm, N.P., Ganf, G.G., and Shapiro, J. 1983. Feeding and assimilation rates for Daphnia pulex fed Aphanizomenon flos-aquae. Limnology and Oceanography 28: 677–687.CrossRefGoogle Scholar
  105. Horn, W. 1981. Phytoplankton losses due to zooplankton grazing in a drinking water reservoir. Internationale Revue der Gesamten Hydrobiologie 66: 787–810.CrossRefGoogle Scholar
  106. Horn, W. 1985a. Investigations in the food selectivity of the planktic crustaceans Daphnia hyalina, Eudiaptomus gracilis, and Cyclops vicinus. Internatinale Revue der Gesamten Hydrobiologie 70: 603–612.CrossRefGoogle Scholar
  107. Horn, W. 1985b. Results regarding the food of the planktic crustaceans Daphnia hyalina and Eudiaptomus gracilis. Internationale Revue der Gesamten Hydrobiologie 70: 703–709.CrossRefGoogle Scholar
  108. Hrbaček, J., Dvořakova, M., Kořinek, M., and Prochźkóva, L. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Internationale Vereinigung für Theoretische und Angewandte Limnologie. Verhandlungen 14: 192–195.Google Scholar
  109. Infante, A. and Edmondson, W.T. 1985. Edible phytoplankton and herbivorous zoo-plankton in Lake Washington. Archiv fur Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 161–171.Google Scholar
  110. Infante, A. and Riehl, W. 1984. The effect of Cyanophyta upon zooplankton in a eutrophic tropical lake (Lake Valencia, Venezuela). Hydrobiologia 113: 293–198.CrossRefGoogle Scholar
  111. Jackson, G.A. 1980. Phytoplankton growth and zooplankton grazing in oligotrophic oceans. Nature 284: 439–441.CrossRefGoogle Scholar
  112. Jacobs, J. 1974. Quantitative measurement of food selection: A modification of the forage ratio and Ivlev’s selectivity index. Oecologia (Berlin) 14: 413–417.Google Scholar
  113. Jarvis, A.C. 1986. Zooplankton community grazing in a hypertrophic lake (Hartbees- poort Dam, South Africa). Journal of Plankton Research 8: 1065–1078.CrossRefGoogle Scholar
  114. Johannes, R.W. and Webb, K.L. 1965. Release of dissolved amino acids by marine zooplankton. Science 150: 76–77.PubMedCrossRefGoogle Scholar
  115. Kalff, J. and Knoechel, R. 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Annual Review of Ecology and Systematics 9: 475–495.CrossRefGoogle Scholar
  116. Kerfoot, W.C. 1987. Cascading effects and indirect pathways, pp. 57–70, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  117. Kerfoot, W.C. and DeMott, W.R. 1984. Food web dynamics: dependent chains and vaulting, pp. 347–382, in Meyers, D.G.. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  118. Kerfoot, W.C., DeMott, W.R., and DeAngelis, D.L. 1985. Interactions among cladocerans: food limitation and exploitative competition. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 161–171.Google Scholar
  119. Kerfoot, W.C. and Sih, A. 1987. Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  120. Ketchum, B.H. 1962. Regeneration of nutrients by zooplankton. Rapport et ProcésVerbaux des Réunions. Consiel Permanent International pour l’exploration de la Mer 152: 142–146.Google Scholar
  121. Kibby, H.V. 1971. Energetics and population dynamics of Diaptomus gracilis. Ecological Monographs 41: 311–327.CrossRefGoogle Scholar
  122. Kilham, S.S. 1988. Phytoplankton responses to changes in mortality rates. Internationale Vereinigung für Theoretische und Angewandte Limnologie. Verhandlungen 23: 677–682.Google Scholar
  123. Kilham, S.S. and Kilham, P. 1984. The importance of resource supply rates in determining phytoplankton community structure, pp. 7–27, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  124. Kiørboe, T. and Tiselius, P.T. 1987. Gut clearance and pigment destruction in a herbivorous copepod, Arcartia tonsa, and the determination of in situ grazing rates. Journal of Plankton Research 9: 525–534.CrossRefGoogle Scholar
  125. Knisely, K. and Geller, W. 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia (Berlin) 69: 86–94.Google Scholar
  126. Knoechel, R. 1977. Analyzing the significance of grazing in Lake Erken. Limnology and Oceanography 22: 967–969.CrossRefGoogle Scholar
  127. Knoechel, R. and Holtby, L.B. 1986. Construction and validation of a body-length- based model for the prediction of cladoceran community filtering rates. Limnology and Oceanography 31: 1–16.CrossRefGoogle Scholar
  128. Koehl, M.A.R. 1984. Mechanisms of particle capture by copepods at low Reynolds numbers: possible modes of selective feeding, pp. 135–166, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  129. Koehl, M.A.R. and Strickler, J.R. 1981. Copepod feeding currents: Food capture at low Reynolds number. Limnology and Oceanography 26: 1062–1073.CrossRefGoogle Scholar
  130. Lack, T.J. and Lund, J.W.G. 1974. Observations and experiments on the phytoplankton of Blelham Tam, English Lake District. I. The experimental tubes. Freshwater Biology 4: 399–415.CrossRefGoogle Scholar
  131. Lampert, W. 1978. Release of dissolved organic carbon by grazing zooplankton. Limnology and Oceanography 23: 831–834.CrossRefGoogle Scholar
  132. Lampert, W. 1986. Wer bestimmt die Struktur von pelagischen Biocoenosen? DieRolle von Phyto- und Zooplankton-Interactionen, pp. 66–73, in Siebeck, O. (editor), Elemente der Steuerung und Regulation in der Pelagialbiozönose, Akademie für Naturschutz und Landschaftspflege, Laufen/Salzac, FRG.Google Scholar
  133. Lampert, W. 1987. Vertical migration of freshwater zooplankton: indirect effects of vertebrate predators on algal communities, pp. 291–299, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  134. Lampert, W., Fleckner, W., Rai, H., and Taylor, B.E. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear water phase. Limnology and Oceanography 31: 478–490.CrossRefGoogle Scholar
  135. Lampert, W. and Taylor, B.E. 1984. In situ grazing rates and particle selection by zooplankton: effects of vertical migration. Internationale Vereinigung für Theoretische und Angewandte Limnologie. Verhandlungen 22: 943–946.Google Scholar
  136. Lampert, W. and Taylor, B.E. 1985. Zooplankton grazing in a eutrophic lake: implications of diel vertical migration. Ecology 66: 68–82.CrossRefGoogle Scholar
  137. Lehman, J.T. 1976. The filter-feeder as an optimal forager, and the predicted shapes of feeding curves. Limnology and Oceanography 21: 501–516.CrossRefGoogle Scholar
  138. Lehman, J.T. 1980a. Nutrient cycling as an interface between algae and grazers in freshwater communities, pp. 251 - 263, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  139. Lehman, J.T. 1980b. Release and cycling of nutrients between planktonic algae and herbivores. Limnology and Oceanography 25: 620–632.CrossRefGoogle Scholar
  140. Lehman, J.T. 1984. Grazing, nutrient release, and their impacts on the structure of phytoplankton communities, pp. 49–72, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  141. Lehman, J.T. and Naumoski, T. 1985. Content and turnover rates of phosphorus in Daphnia pulex: effect of food quality. Hydrobiologia 128: 119–125.CrossRefGoogle Scholar
  142. Lehman, J.T. and Sandgren, C. 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnology and Oceanography 30: 34–46.CrossRefGoogle Scholar
  143. Lehman, J.T. and Scavia, D. 1982. Microscale patchiness of nutrients in plankton com-munities. Science 216: 729–730.PubMedCrossRefGoogle Scholar
  144. Lehman, J.T. and Scavia, D. 1984. Measuring the ecological significance of microscale nutrient patches. Limnology and Oceanography 29: 214–216.CrossRefGoogle Scholar
  145. Levins, R. 1979. Coexistence in a variable environment. The American Naturalist 114: 765–783.CrossRefGoogle Scholar
  146. Levitan, C. 1987. Formal stability analysis of a planktonic freshwater community, pp. 71–100, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  147. Lewis, W.M. Jr. 1977. Comments on the analysis of grazing in Lake Erken. Limnology and Oceanography 22: 966–967.CrossRefGoogle Scholar
  148. Lynch, M. 1980. Aphanizomenon blooms: Alternate control and cultivation by Daphnia pulex, pp. 299–304, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  149. Lynch, M. and Shapiro, J. 1981. Predation, enrichment, and phytoplankton community structure. Limnology and Oceanography 26: 86–102.CrossRefGoogle Scholar
  150. Mackas, D. and Bohrer, R. 1976. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. Journal of Experimental Marine Biology and Ecology 25: 77–85.CrossRefGoogle Scholar
  151. Martin, J.H. 1968. Phytoplankton-zooplankton relationships in Narragansett Bay. 3. Seasonal changes in zooplankton excretion rates in relation to phytoplankton abundance. Limnology and Oceanography 13: 63–71.CrossRefGoogle Scholar
  152. McCarthy, J.J. and Altabet, M.A. 1984. Patchiness in nutrient supply: implications for phytoplankton ecology, pp. 29–47, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  153. McCarthy, J.J. and Goldman, J.C. 1979. Nitrogenous nutrition of marine phytoplankton in nutrient depleted waters. Science 203: 670–672.PubMedCrossRefGoogle Scholar
  154. McCauley, E. and Briand, F. 1979. Zooplankton grazing and phytoplankton species richness: Field tests of the predation hypothesis. Limnology and Oceanography 24: 243–252.CrossRefGoogle Scholar
  155. McCauley, E. and Downing, J.A. 1985. The prediction of cladoceran grazing rate spectra. Limnology and Oceanography 30: 202–212.CrossRefGoogle Scholar
  156. McCauley, E. and Kalff, J. 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 38: 458–463.CrossRefGoogle Scholar
  157. McCauley, E. and Murdoch, W.W. 1987. Cyclic and stable populations: plankton as paradigm. The American Naturalist 129: 97–121.CrossRefGoogle Scholar
  158. McMahon, J.W. and Rigler, F.H. 1965. Feeding rate of Daphnia magna Straus in different foods labelled with radioactive phosphorus. Limnology and Oceanography 10: 105–114.CrossRefGoogle Scholar
  159. McQueen, D.J. 1970. Grazing rates and food selection in Diaptomus oregonesis (Copepoda) from Marion Lake, British Columbia. Journal of the Fisheries Research Board of Canada 27: 13–20.CrossRefGoogle Scholar
  160. McQueen, D.G., Post, J.R., and Mills, E.L. 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.CrossRefGoogle Scholar
  161. Meise, C.J., Munns, W.R. Jr., and Hairston, N.G. Jr. 1985. An analysis of the feeding behavior of Daphnia pulex. Limnology and Oceanography 30: 862–870.CrossRefGoogle Scholar
  162. Miller, T.E. and Kerfoot, W.C. 1987. Redefining indirect effects, pp. 33–37, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  163. Mitamura, O. and Saijo, Y. 1986. Urea metabolism and its significance in the nitrogen cycle in the euphotic layer of Lake Biwa. IV. Regeneration of urea and ammonia. Archiv für Hydrobiologie 107: 425–440.Google Scholar
  164. Muck, P. and Lampert, W. 1980. Feeding of freshwater filter-feeders at very low food concentrations: Poor evidence for “threshold feeding” and “optimal foraging” in Daphnia longispina and Eudiaptomus gracilis. Journal of Plankton Research 2: 367–379.CrossRefGoogle Scholar
  165. Muck, P. and Lampert, W. 1984. An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans. 1. Comparative feeding studies with Eudiaptomus gracilis and Daphnia longispina. Archiv für Hydrobiologie. Supplement 66: 157–179.Google Scholar
  166. Murdoch, W.W. and McCauley, E. 1985. Three distinct types of dynamic behavior shown by a simple planktonic system. Nature 316: 628–630.CrossRefGoogle Scholar
  167. Murtaugh, P.A. 1985. The influence of food concentration and feeding rate on the gut residence time of Daphnia. Journal of Plankton Research 7: 415–420.CrossRefGoogle Scholar
  168. Okamoto, K. 1984. Size-selective feeding of Daphnia longispina hyalina and Eudiaptomus japonicus on a natural phytoplankton assemblage with the fractionizing method. Memoirs of the Faculty of Science, Kyoto University, Series of Biology 9: 23–40.Google Scholar
  169. Olsen, Y. and Østgaard, K. 1985. Estimating release rates of phosphorus from zoo-plankton: Model and experimental verification. Limnology and Oceanography 30: 844–852.CrossRefGoogle Scholar
  170. Olsen, Y., Vrum, K.M., and Jensen, A. 1986a. Some characteristics of the carbon com-pounds released by Daphnia. Journal of Plankton Research 8: 505–517.CrossRefGoogle Scholar
  171. Olsen, Y., Jensen, A., Reinertsen, H., Børsheim, K.Y., Heldal, M., and Langeland, A. 1986b. Dependence of the rate of release of phosphorus by zooplankton on the P:C ratio in the food supply, as calculated by a recycling model. Limnology and Oceanography 31: 34–44.CrossRefGoogle Scholar
  172. Pace, M.L. 1986. Zooplankton community structure, but not biomass influences the phosphorus-chlorophyll a relationship. Canadian Journal of Fisheries and Aquatic Sciences 41: 1089–1096.CrossRefGoogle Scholar
  173. Paffenhöfer, G.-A. 1984. Calanoid copepod feeding: grazing on small and large particles, pp. 75 - 95, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  174. Paffenhöfer, G.-A., Strickler, J.R., and Alcaraz, M. 1982. Suspension-feeding byherbivorous calanoid copepods: a cinematographic study. Marine Biology 67: 193–199.CrossRefGoogle Scholar
  175. Paloheimo, J.E. 1979. Indices of food preference by a predator. Journal of the Fisheries Research Board of Canada 36: 470–473.CrossRefGoogle Scholar
  176. Persson, G. 1985. Community grazing and the regulation of in situ clearance and feeding of planktonic crustaceans in lakes in the Kuskkel area, northern Sweden. Archiv für Hydrobiologie Supplement 70: 197–238.Google Scholar
  177. Peters, R.H. 1975. Phosphorus regeneration by natural populations of limnetic zoo-plankton. Internationale Vereingung fur Theoretische und Angewandte Limnologie. Verhandlungen 19: 273–279.Google Scholar
  178. Peters, R.H. 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge. 329 pp.Google Scholar
  179. Peters, R.H. 1984. Methods for the study of feeding, filtering and assimilation by zooplankton, pp. 336–412, in Downing, J.A. and Rigler, F.H. (editors), A Manual for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook 17, Blackwell, Oxford.Google Scholar
  180. Peters, R.H. and Downing, J.A. 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography 29: 763–784.CrossRefGoogle Scholar
  181. Peters, R.H. and Lean, D. 1973. The characterization of soluble phosphorus released by limnetic zooplankton. Limnology and Oceanography 18: 270–279.CrossRefGoogle Scholar
  182. Peters, R.H. and Rigler, F.H. 1973. Phosphorus release by Daphnia. Limnology and Oceanography 18: 821–839.CrossRefGoogle Scholar
  183. Porter, K.G. 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.CrossRefGoogle Scholar
  184. Porter, K.G. 1976. Enhancement of algal growth and productivity by grazing zoo-plankton. Science 192: 1332–1334.PubMedCrossRefGoogle Scholar
  185. Porter, K.G. 1977. The plant-animal interface in freshwater ecosystems. American Scientist 65: 159–170.Google Scholar
  186. Porter, K.G., Gerritsen, J., and Orcutt, J.D. Jr. 1982. The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia. Limnology and Oceanography 27: 935–949.CrossRefGoogle Scholar
  187. Porter, K.G. and McDonough, R. 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnology and Oceanography 29: 365–369.CrossRefGoogle Scholar
  188. Porter, K.G. and Orcutt, J.D. Jr. 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia, pp. 268–281, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  189. Post, J.R. and McQueen, D.J. 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biology 17: 79–89.CrossRefGoogle Scholar
  190. Poulet, S.A. 1973. Grazing of Pseudocalanus minutus on naturally occurring particulate matter. Limnology and Oceanography 18: 564–573.CrossRefGoogle Scholar
  191. Poulet, S.A. and Marsot, P. 1980. Chemosensory feeding and food-gathering by omnivorous marine copepods, pp. 198–218, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  192. Pourriot, R. 1977. Food and feeding habits of Rotifera. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 8: 243–260.Google Scholar
  193. Prescott, G.W. 1962. Algae of the Western Great Lakes Area. Willam C. Brown Company, Dubuque, Iowa. 977 pp.Google Scholar
  194. Price, H.J. and Paffenhofer, G.-A. 1985. Perception of food availability by calanoid copepods. Archiv für Limnologie Beiheft. Ergebnisse der Limnologie 21: 115–124.Google Scholar
  195. Redfield, G.W. 1980. The effect of zooplankton on phytoplankton productivity in the epilimnion of a subalpine lake. Hydrobiologia 70: 217–224.CrossRefGoogle Scholar
  196. Reynolds, C.S. 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press. 384 pp.Google Scholar
  197. Reynolds, C.S., Thompson, J.M., Ferguson, A.J.D., and Wiseman, S.W. 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. Journal of Plankton Research 4: 561–600.CrossRefGoogle Scholar
  198. Richman, S., Bohon, S.A., and Robbins, S.E. 1980. Grazing interactions among freshwater calanoid copepods, pp. 219 - 233, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  199. Richman, S. and Dodson, S.I. 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnology and Oceanography 28: 948–956.CrossRefGoogle Scholar
  200. Riemann, B., Jorgensen, N.O.G., Lampert, W., and Fuhrman, J.A. 1986. Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. Microbial Ecology 12: 247–258.CrossRefGoogle Scholar
  201. Rigler, F.H. 1961. The uptake and release of inorganic phosphorus by Daphnia magna Straus. Limnology and Oceanography 6: 165–174.CrossRefGoogle Scholar
  202. Robarts, R.D. and Zohary, T. 1984. Microcystis,aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa). Journal of Ecology 72: 1001–1017.Google Scholar
  203. Roman, M.R. 1983. Nitrogenous nutrition of marine invertebrates, pp. 345–383 in Carpenter, E.J. and Capone, D.G. (editors), Nitrogen in the Marine Environment. Academic Press, New York.Google Scholar
  204. Roughgarden, J. and Diamond, J. 1986. Overview: the role of species interactions in community ecology, pp. 333–343, in Diamond, J. and Case, T.J. (editors), Community Ecology. Harper and Row, New York.Google Scholar
  205. Scavia, D., Fahnenstiel, G.L., Davis, J.A., and Kreiss, R.G. Jr. 1984. Small-scale nutrient patchiness: Some consequences and a new encounter mechanism. Limnology and Oceanography 29: 785–793.CrossRefGoogle Scholar
  206. Scavia, D., Fahnenstiel, G.L., Evans, M.S., Jude, J.T., and Lehman, J.T. 1986. Influence of salmonine predation and weather on long-term water quality trends in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 43: 435–443.CrossRefGoogle Scholar
  207. Scavia, D. and Gardner, W.S. 1982. Kinetics of nitrogen and phosphorus release in varying food supplies by Daphnia magna. Hydrobiologia 96: 105–111.CrossRefGoogle Scholar
  208. Scavia, D. and McFarland, M.J. 1982. Phosphorus release patterns and the effects of reproductive stage and ecdysis in Daphnia magna. Canadian Journal of Fisheries and Aquatic Sciences 39: 1310–1314.CrossRefGoogle Scholar
  209. Schelske, C.L. and Stoermer, E.F. 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science 173: 423–424.PubMedCrossRefGoogle Scholar
  210. Schoenberg, S.A. and Carlson, R.E. 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypertrophic lake. Oikos 42: 291–302.CrossRefGoogle Scholar
  211. Schoenberg, S.A., Maccubbin, A.E., and Hodson, R.E. 1984. Cellulose digestion by freshwater microcrustacea. Limnology and Oceanography 29: 1132–1136.CrossRefGoogle Scholar
  212. Shapiro, J. 1980. The importance of trophic-level interactions to the abundance and species composition of algae in lakes, pp. 105–116, in Barica, J. and Mur, L.R. (editors), Hypertrophic Ecosystems. Junk, The Hague.CrossRefGoogle Scholar
  213. Shapiro, J. and Swain, E.B. 1983. Lessons from the silica “decline” in Lake Michigan. Science 221: 457–459.PubMedCrossRefGoogle Scholar
  214. Shapiro, J. and Wright, D.I. 1984. Lake restoration by biomanipulation: Round Lake, Minnesota—the first two years. Freshwater Biology 14: 371–383.CrossRefGoogle Scholar
  215. Siegfried, C.A. 1987. Large-bodied crustacea and rainbow smelt in Lake George, New York: trophic interactions and phytoplankton community composition. Journal of Plankton Research 9: 27–39.CrossRefGoogle Scholar
  216. Sommer, U. 1985. Seasonal succession of phytoplankton in Lake Constance. Bioscience 35: 351–357.CrossRefGoogle Scholar
  217. Sommer, U. 1986. Phytoplankton competition along a gradient of dilution rates. Oecologia (Berlin) 68: 503–506.Google Scholar
  218. Sommer, U. 1988. Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnology and Oceanography 33: 1037–1054.CrossRefGoogle Scholar
  219. Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A. 1986. The PEG-Model of seasonal successional events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  220. Spencer, C.N. and King, D.L. 1984. Role of fish in regulation of plant and animal communities in eutrophic ponds. Canadian Journal of Fisheries and Aquatic Sciences 41: 1851–1855.CrossRefGoogle Scholar
  221. Spencer, C.N. and King, D.L. 1987. Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, CO2, and trophic level interactions. Hydrobiologia 144: 183–192.CrossRefGoogle Scholar
  222. Starkweather, P.L. 1980. Aspects of the feeding behavior and trophic ecology of suspension feeding rotifers. Hydrobiologia 73: 63–72.CrossRefGoogle Scholar
  223. Sterner, R.W. 1986a. Herbivores’ direct and indirect effects on algal populations. Science 231: 605–607.PubMedCrossRefGoogle Scholar
  224. Sterner, R.W. 1986b. Nutrients, Algae and Zooplankton: A Mechanistic Consideration of Direct and Indirect Effects. Ph.D. thesis, University of Minnesota, Minneapolis, Minnesota.Google Scholar
  225. Sterner, R.W. 1989. Resource competition during seasonal succession toward cyanobacteria. Ecology 70: 229–245.CrossRefGoogle Scholar
  226. Stockner, J.G. and Antia, N.J. 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Canadian Journal of Fisheries and Aquatic Sciences 43: 2472–2503.CrossRefGoogle Scholar
  227. Strickler, J.R. 1984. Sticky water: a selective force in copepod evolution, pp. 187–239, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.Google Scholar
  228. Takahashi, M. and Ikeda, T. 1975. Excretion of ammonia and inorganic phosphorus by Euphausia pacifica and Metridia pacifica at different concentrations of phytoplankton. Journal of the Fisheries Research Board of Canada 32: 2189–2195.CrossRefGoogle Scholar
  229. Tátrai, I. and Istvánovics, V. 1986. The role of fish in the regulation of nutrient cycling in Lake Balaton, Hungary. Freshwater Biology 16: 417–424.CrossRefGoogle Scholar
  230. Taylor, W.D. 1984. Phosphorus flux through epilimnetic zooplankton from Lake Ontario: relationship with body size and significance to phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 41: 1702–1712.CrossRefGoogle Scholar
  231. Taylor, W.D. and D.R. Lean. 1981. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Canadian Journal of Fisheries and Aquatic Sciences 38: 1316–1321.CrossRefGoogle Scholar
  232. Threlkeld, S.T. 1987. Experimental evaluation of trophic-cascade and nutrient-mediated effects of planktivorous fish on plankton community structure, pp. 161–173, in Kerfoot, W.C. and Sih, A. (editors), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  233. Thompson, J.M., Ferguson, A.J.D., and Reynolds, C.S. 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. Journal of Plankton Research 4: 545–560.CrossRefGoogle Scholar
  234. Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, New Jersey.Google Scholar
  235. Tilman, D., Kiesling, R., Sterner, R., Kilham, S.S., and Johnson, F.A. 1986. Green, bluegreen and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Archiv für Hydrobiologie 106: 473–485.Google Scholar
  236. Turpin, D.H., Miller, A.G., Parslow, J.S., Elrifi, I.R., and Canvin, D.T. 1985. Predicting the kinetics of dissolved inorganic carbon limited growth from the short-term kinetics of photosynthesis in Synechococcus leopoliensis (Cyanophyta). Journal of Phycology 21: 409–418.CrossRefGoogle Scholar
  237. Vanderploeg, H.A. 1981. Seasonal particle-size selection by Diaptomus sicilis in offshore Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 38: 504–517.CrossRefGoogle Scholar
  238. Vanderploeg, H., Laird, G.A., Leibig, J.R., and Gardner, W.S. 1986. Ammonium release rates by zooplankton in suspensions of heat-killed algae and an evaluation of the flow cell method. Journal of Plankton Research 8: 341–352.CrossRefGoogle Scholar
  239. Vanderploeg, H.A. and Ondricek-Fallischeer, R.L. 1982. Intersetule distances are a poor predictor of particle retention efficiency in Diaptomus sicilis. Journal of Plankton Research. 4: 237–244.CrossRefGoogle Scholar
  240. Vanderploeg, H.A. and Paffenhöffer, G.-A. 1985. Modes of algal capture by the fresh-water copepod Diaptomus sicilis and their relation to food-size selection. Limnology and Oceanography 30: 871–885.CrossRefGoogle Scholar
  241. Vanderploeg, H. and Scavia, D. 1979a. Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36: 362–365.CrossRefGoogle Scholar
  242. Vanderploeg, H.A. and Scavia, D. 1979b. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modelling 7: 135–149.CrossRefGoogle Scholar
  243. Vanderploeg, H.A. and Scavia, D. 1983. Misconceptions about estimating prey preference. Canadian Journal of Fisheries and Aquatic Sciences 40: 248–250.CrossRefGoogle Scholar
  244. Vanderploeg, H.A., Scavia, D., and Liebig, J.R. 1984. Feeding rate of Diaptomus sicilis and its relation to selectivity and effective food concentration in algal mixtures in Lake Michigan. Journal of Plankton Research 6: 919–941.CrossRefGoogle Scholar
  245. Vanni, M.J. 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.CrossRefGoogle Scholar
  246. Vogel, S. 1981. Life in Moving Fluids: The Physical Biology of Flow. Willard Grant Press, Boston.Google Scholar
  247. Watts, E.C. and Young, S. 1980. Components of Daphnia feeding behavior. Journal of Plankton Research 2: 203–212.CrossRefGoogle Scholar
  248. Wehr, J.D., Brown, L.M., and O’Grady, K. 1987. Highly specialized nitrogen metabolism in a freshwater phytoplankter, Chrysochromulina breviturrita. Canadian Journal of Fisheries and Aquatic Sciences 44: 736–742.CrossRefGoogle Scholar
  249. Werner, E.E. 1986. Species interactions in freshwater fish communities, pp. 344–358, in Diamond, J. and Case, T.J., Community Ecology. Harper and Row, New York.Google Scholar
  250. Wetzel, R.G. 1983. Limnology. Second Edition. Saunders College Publishing, New York.Google Scholar
  251. Wheeler, P.A. 1983. Phytoplankton nitrogen metabolism, pp. 307–346, in Carpenter, E.J. and Capone, D.G. (editors), Nitrogen in the Marine Environment. Academic Press, New York.Google Scholar
  252. Wiens, J.A. 1977. On competition and variable environments. American Scientist 65: 590–597.Google Scholar
  253. Williams, T.G. and Turpin, D.H. 1987. Photosynthetic kinetics determine the outcome of competition for dissolved inorganic carbon by freshwater microalgae: implications for acidified lakes. Oecologia (Berlin) 73: 307–311.Google Scholar
  254. Wilson, D.S. 1973. Food size selection among copepods. Ecology 54: 909–914.CrossRefGoogle Scholar
  255. Wynne, D. and Gophen, M. 1981. Phosphatase activity in freshwater zooplankton. Oikos 37: 369–376.CrossRefGoogle Scholar
  256. Zánkai, P.N. and Ponyi, J.E. 1986. Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake (Lake Balaton, Hungary). Hydrobiologia 135: 131–147.CrossRefGoogle Scholar
  257. Zaret, R.E. 1980. The animal and its viscous environment, pp. 3–9 in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  258. Zehr, J.P., Falkowski, P.G., Fowler, J., and Capone, D.G. 1988. Coupling between ammonium uptake and incorporation in a marine diatom: experiments with the short-lived radioisotope 13N. Limnology and Oceanography 33: 518–527.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York London Paris Tokyo 1989

Authors and Affiliations

  • Robert W. Sterner
    • 1
  1. 1.Department of BiologyUniversity of Texas, ArlingtonArlingtonUSA

Personalised recommendations