Skip to main content

Subaerial Fallout Tephra

  • Chapter
Pyroclastic Rocks

Abstract

The transport modes of subaerial fallout tephra are (1) by ballistic trajectory and (2) by turbulent suspension. Energy is supplied initially to fragments by the eruption and later by wind. Tephra that falls from the atmosphere onto land is called subaerial fallout or airfall tephra. Tephra deposited in standing water is called subaqueous fallout tephra and includes (1) submarine or marine tephra, and (2) sub- lacustrine tephra. Subaqueous fallout tephra originating from eruptions on land is discussed separately (Chap. 7) from pyroclastic materials originating wholly beneath water (Chap. 10). Island arc and oceanic island flank environments generally include both kinds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aramaki, S., 1963. Geology of Asama Volcano. Tokyo Univ. Fac. Sci. Jour., sec. II, 14, 233–433.

    Google Scholar 

  • Bagnold, R.A., 1954a. The physics of blown sand and desert dunes. Methuen, London, 1–265.

    Google Scholar 

  • Bagnold, R.A., 1954b. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Roy. Soc. London A. 225, 49–63.

    Article  Google Scholar 

  • Bloomfield, K., Rubio, G.S. and Wilson, L., 1977. Plinian eruptions of Nevado de Toluca Volcano, Mexico. Geol. Rundsch. 66, 120–146.

    Article  Google Scholar 

  • Bogaard, P.v.d., 1983. Die Eruption des Laacher See Vulkans. Ruhr Univ. Bochum Ph. D. diss. 1–348.

    Google Scholar 

  • Booth, B., 1973. The Granadilla pumice deposit of southern Tenerife, Canary Islands. Proc. Geol. Assoc. London 84, 353–370.

    Article  Google Scholar 

  • Booth, B., Croasdale, R. and Walker, G.P.L., 1978. A quantitative study of five thousand years of volcanism on Säo Miguel, Azores. Philos. Trans. Roy. Soc. London A 288, 271–319.

    Article  Google Scholar 

  • Brazier, S., Davis, A.N., Sigurdsson, H. and Sparks, R.S.J., 1982. Fall-out and deposition of volcanic ash during the 1979 explosive eruption of the Soufrière of St. Vincent. J. Volcanol. Geotherm. Res. 14, 335–359.

    Article  Google Scholar 

  • Brazier, S., Sparks, R.S.J., Carey, S.N., Sigurdsson, H. and Westgate, J.A., 1983. Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature 301, 115–119.

    Article  Google Scholar 

  • Carey, S.N. and Sigurdsson, H., 1982. Influence of particle aggregation on deposition of distal tephra from the May 18,1980, eruption of Mount St. Helens Volcano. J. Geophys. Res. 87, 7061–7072.

    Article  Google Scholar 

  • Chouet, B., Hamisevicz, N. and McGetchin, T.R., 1974. Photoballistics of volcanic jet activity at Stromboli, Italy. J. Geophys. Res. 79, 4961–4976.

    Article  Google Scholar 

  • Dawson, J.B., 1962. The geology of Oldoinyo Lengai. Bull. Volcanol. 24, 349–387.

    Article  Google Scholar 

  • Duffield, W.A., Bacon, C.R. and Roquemore, G.R., 1979. Origin of reverse-graded bedding in air fall pumice, Coso Range, California. J. Volcanol. Geotherm. Res. 5, 35–48.

    Article  Google Scholar 

  • Eaton, G.P., 1964. Windborne volcanic ash: A possible index to polar wandering. J. Geol. 72, 1–35.

    Article  Google Scholar 

  • Fisher, R.V., 1964a. Resurrected Oligocene hills, eastern Oregon. Amer. J. Sci. 262, 713–725.

    Article  Google Scholar 

  • Fisher, R.V., 1964b. Maximum size, median diameter, and sorting of tephra. J. Geophys. Res. 69, 341–355.

    Article  Google Scholar 

  • Fisher, R.V., 1965. Settling velocity of glass shards. Deep-Sea Res. 12, 345–353.

    Google Scholar 

  • Fisher, R.V., 1966d. Textural comparison of John Day volcanic siltstone with loess and volcanic ash. J. Sed. Petrol. 36, 706–718.

    Google Scholar 

  • Fisher, R.V., 1967. Early Tertiary deformation in north-central Oregon. Amer. Assoc. Petrol. Geol. Bull. 51, 111–123.

    Google Scholar 

  • Fisher, R.V. and Rensberger, J.M., 1973. Physical stratigraphy of the John Day Formation. Univ. Calif. Publ. Geol. Sci. 101, 1–45.

    Google Scholar 

  • Froggatt, P.C., 1982. Review of methods of estimating rhyolitic tephra volumes; applications to the Taupo volcanic zone, New Zealand. J. Volcanol. Geotherm. Res. 14, 301–318.

    Article  Google Scholar 

  • Fryxell, R., 1965. Mazama and Glacier Peak volcanic ash layers: Relative ages. Science 147, 1288–1290.

    Article  Google Scholar 

  • Fudali, R.F. and Melson, W.G., 1972. Ejecta velocities, magma chamber pressure, and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull. Volcanol. 35, 383–401.

    Article  Google Scholar 

  • Hay, R.L., 1959a. Formation of the crystal-rich glowing avalanche deposits of St. Vincent, B.W.I. J. Geol. 67, 540–562.

    Article  Google Scholar 

  • Hay, R.L., 1978. Melilitite-carbonatite tuffs in the Laetolil beds of Tanzania. Contr. Mineral. Petrol. 67, 357–367.

    Article  Google Scholar 

  • Hedervari, P., 1963. On the energy and magnitude of volcanic eruptions. Bull. Volcanol. 25, 373–385.

    Article  Google Scholar 

  • Howorth, R., 1975. New formations of Late Pleistocene tephras from the Okataina volcanic centre, New Zealand. N.Z. J. Geol. Geophys. 18, 683–712.

    Google Scholar 

  • Inman, D.L., 1952. Measures of describing the size distribution of sediments. J. Sed. Petrol. 22, 125–145.

    Google Scholar 

  • Izett, G.A., 1981. Volcanic ash beds: recorders of Upper Cenozoic silicic pyroclastic volcanism in the western United States. J. Geophys. Res. 86, 10200–10222.

    Article  Google Scholar 

  • Izett, G.A. and Naeser, C.W., 1976. Age of the Bishop Tuff of eastern California as determined by the fission-track method. Geology 4, 587–590.

    Article  Google Scholar 

  • Judd, J.W., 1888. On the volcanic phenomena of the eruption (of Krakotoa), and on the nature and distribution of the ejected materials, pp. 1–56, Part I. In Symons, G.J., ed., The eruption of Krakatoa and subsequent phenomena. Rpt. Krakatoa Committee Roy. Soc. London, 1–494.

    Google Scholar 

  • Katsui, Y., 1959. On the Shikotsu pumice fall deposit. Bull. Volcanol. Soc. Jap., 4, 33–48.

    Google Scholar 

  • Keller, J., 1981. Carbonatitic volcanism in the Kaiserstuhl alkaline complex: evidence for highly fluid carbonatitic melts at the earth’s surface. J. Volcanol. Geotherm. Res. 9, 423–432.

    Article  Google Scholar 

  • Kittleman, L.R., 1973. Mineralogy, correlation, and grain-size distributions of Mazama tephra and other post-glacial pyroclastic layers; Pacific Northwest. Geol. Soc. Amer. Bull. 84, 2957–2980.

    Article  Google Scholar 

  • Knox, J.B. and Short, N.M., 1963. A diagnostic model using ash fall data to determine eruption characteristics and atmospheric conditions during a major volcanic event. Univ. Calif. Lawrence Radiation Lab., Contract W-7405-eng-4B, UCRL 7197, 1–29.

    Google Scholar 

  • Kobayashi, K., Shimizu, H., Kitazawa, K. and Kobashi, T., 1967. The pumice-fall deposit “PM-1” supplied from Ontake Volcano. J. Geol. Soc. Jap., 73, 291–308.

    Google Scholar 

  • Kuno, H., Ishikawa, T., Katsui, Y., Yagi, K., Yamasaki, M. and Taneda, S., 1964. Sorting of pumice and lithic fragments as a key to eruptive and emplacement mechanism. Jap. J. Geol. Geog. 35, 223–238.

    Google Scholar 

  • Lamb, H.H., 1970. Volcanic dust in the atmosphere, with a chronology and assessment of its meteorological significance. Phil. Trans. Roy. Soc. London A 266, 425–533.

    Article  Google Scholar 

  • Larsson, W., 1937. Vulkanische Asche vom Ausbruch des chilenischen Vulkans Quizapu (1932) in Argentinien gesammelt. Eine Studie über äolische Differentiation. Geol. Inst. Upsala Bull. 26, 27–52.

    Google Scholar 

  • Lemke, R.W., Mudge, M.R., Wilcox, R.E. and Powers, H.A., 1975. Geologic setting of the Glacier Peak and Mazama ash-bed markers in west-central Montana. U.S. Geol. Survey Bull. 1395-H, H1–H31.

    Google Scholar 

  • Lerbekmo, J.F. and Campbell, F.A., 1969. Distribution, composition, and source of the White River Ash, Yukon Territory. Can. J. Earth Sci. 6, 109–116.

    Article  Google Scholar 

  • Lerbekmo, J.F., Westgate, J.A., Smith, D.G.W. and Denton, G.H., 1975. New data on the character and history of the White River volcanic eruption, Alaska. In Cresswell, M.M. and Suggate, R.P., eds., Quaternary studies. Roy. Soc. N.Z., Wellington, 203–209.

    Google Scholar 

  • Lipman, P.W., 1967. Mineral and chemical variations within an ash-flow sheet from Aso caldera, southwestern Japan. Contr. Mineral. Petrol. 16, 300–327.

    Article  Google Scholar 

  • Lipman, P.W. and Mullineaux, eds., 1981. The 1980 eruptions of Mount St. Helens. U.S. Geol. Survey Prof. Paper 1250, 1–844.

    Google Scholar 

  • Lirer, L., Pescatore, T., Booth, B. and Walker, G.P.L., 1973. Two Plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol. Soc. Amer. Bull. 84, 759–772.

    Article  Google Scholar 

  • McGetchin, T.R., Settle, M. and Chouet, B.A., 1974. Cinder cone growth modeled after northeast crater, Mount Etna, Sicily. J. Geophys. Res. 79, 3257–3272.

    Article  Google Scholar 

  • Meyer, J.D., 1972. Glass crust on intratelluric phenocrysts in volcanic rocks as a measure of eruptive violence. Bull. Volcanol. 35, 358–368.

    Article  Google Scholar 

  • Minakami, T., 1942. On the distribution of volcanic ejecta, II. The distribution of Mt. Asama pumice in 1783. Tokyo Univ. Earthq. Res. Inst. Bull. 20, 93–106.

    Google Scholar 

  • Moore, J.G. and Sisson, T.W., 1981. Deposits and effects of the May 18 pyroclastic surge. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 421–438.

    Google Scholar 

  • Mullineaux, D.R., 1974. Pumice and other pyroclastic deposits in Mount Rainier National Park, Washington. U.S. Geol. Survey Bull. 1326, 1–83.

    Google Scholar 

  • Murai, I., 1961. A study of the textural characteristics of pyroclastic flow deposits in Japan. Tokyo Univ. Earthq. Res. Inst. Bull. 39, 133–248.

    Google Scholar 

  • Murata, K.J., Donoli, C. and Saenz, R., 1966. The 1963–1965 eruption of Irazu Volcano, Costa Rica. Bull. Volcanol. 29, 765–796.

    Article  Google Scholar 

  • Murray, J. and Renard, A.J., 1884. On the microscopic characters of volcanic ashes and cosmic dust and their distribution in the deep-sea deposits. Roy. Soc. Edinburgh Proc. 12, 474–495.

    Google Scholar 

  • Nairn, I.A., 1972. Rotoehu ash and the Rotoiti Breccia Formation, Taupo volcanic zone, New Zealand. N.Z. J. Geol. Geophys. 15, 251–261.

    Google Scholar 

  • Porter, S.C., 1973. Stratigraphy and chronology of late Quaternary tephra along the South Rift Zone of Mauna Kea Volcano, Hawaii. Geol. Soc. Amer. Bull. 84, 1923–1940.

    Article  Google Scholar 

  • Rose, W.I., Jr., 1972. Notes on the 1902 eruption of Santa Maria volcano, Guatemala. Bull. Volcanol. 36, 29–45.

    Article  Google Scholar 

  • Salmi, M., 1948. The Hekla ashfalls in Finland A.D. 1947. Geol. Forskning Sanstaten Bull. 142, 87–96.

    Google Scholar 

  • Sapper, K., 1904. Die vulkanischen Ereignisse in Mittelamerika im Jahre 1902. N. Jb. Min. Geol. Pal., 39–90.

    Google Scholar 

  • Sarna-Wojcicki, A.M., Meyer, C.E., Woodward, M.J. and Lamothe, PJ., 1981. Composition of air-fall ash erupted on May 18, May 25, June 12, July 22 and August 7. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 667–681.

    Google Scholar 

  • Sarna-Wojcicki, A.M., Shipley, S., Waitt, R.B., Jr., Dzurisin, D. and Wood, S.H., 1981. Areal distribution, thickness, mass, volume, and grain size of air-fall ash from six major eruptions of 1980. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 577–600.

    Google Scholar 

  • Scheidegger, A.E. and Potter, P.E., 1968. Textural studies of grading: volcanic ashfalls. Sedimentology 11, 163–170.

    Article  Google Scholar 

  • Schmincke, H.-U., 1974b. Volcanological aspects of peralkaline silicic welded ash-flow tuffs. Bull. Volcanol. 38, 594–636.

    Article  Google Scholar 

  • Schmincke, H.-U., 1976. Geology of the Canary Islands. In Kunkel, G., ed., Biogeography and Ecology in the Canary Islands. W. Junk, The Hague, 67–184.

    Chapter  Google Scholar 

  • Schmincke, H.-U., 1977a. Eifel-Vulkanismus östlich des Gebietes Rieden-Mayen. Fortschr. Miner. 55, 1–31.

    Google Scholar 

  • Schmincke, H.-U., 1977b. Phreatomagmatische Phasen in quartären Vulkanen der Osteifel. Geol. Jahrb. 39, 3–45.

    Google Scholar 

  • Segerstrom, K., 1950. Erosion studies at Paricutin, State of Michoacán, Mexico. U.S. Geol. Survey Bull. 965-A, 1–164.

    Google Scholar 

  • Self, S., 1976. The Recent volcanology of Terceira, Azores. J. Geol. Soc. London 132, 645–666.

    Article  Google Scholar 

  • Self, S. and Sparks, R.S.J., 1978. Characteristics of wide-spread pyroclastic deposits formed by the interaction of silicic magma and water. Bull. Volcanol. 41–3, 1–17.

    Google Scholar 

  • Shaw, D.M., Watkins, N.D. and Huang, T.C., 1974. Atmospherically transported volcanic dust in deep sea sediments: theoretical considerations. J. Geophys. Res. 79, 3087–3097.

    Article  Google Scholar 

  • Sheridan, M.F., 1971. Particle-size characteristics of pyroclastic tuffs. J. Geophys. Res. 76, 5627–5634.

    Article  Google Scholar 

  • Slaughter, M. and Hamil, M., 1970. Model for deposition of volcanic ash and resulting bentonite. Geol. Soc. Amer. Bull. 81, 961–968.

    Article  Google Scholar 

  • Smith, R.L., 1979. Ash-flow magmatism. Geol. Soc. Amer. Sp. Paper 180, 5–27.

    Google Scholar 

  • Sorem, R.K., 1982. Volcanic ash clusters: tephra rafts and scavengers. J. Volcanol. Geotherm. Res. 13, 63–71.

    Article  Google Scholar 

  • Sparks, R.S.J, and Walker, J.P.L., 1977. The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. J. Volcanol. Geotherm. Res. 2, 329–341.

    Article  Google Scholar 

  • Sparks, R.S.J., Wilson, L. and Hulme, G., 1978. Theoretical modeling of the generation, movement and emplacement of pyroclastic flows by column collapse. J. Geophys. Res. 83, 1727–1739.

    Article  Google Scholar 

  • Suzuki, T., Katsui, Y. and Nakamura, T., 1973. Size distribution of the Tarumai Ta-b pumice-fall deposit. 18, 47–64.

    Google Scholar 

  • Taylor, N.H., 1933. Soil processes in volcanic ash bçds, Part I. N.Z. J. Sci. Tech. 14, 193–202.

    Google Scholar 

  • Thorarinsson, S., 1954. The eruption of Hekla 1947-48, part 2, Ch. 3, The tephra-fall from Hekla on March 29,1947. Soc. Sci. Islandica, Reykjavik, 1–68.

    Google Scholar 

  • Thorarinsson, S., 1967b. The eruption of Hekla 1947-1948, I. The eruptions of Hekla in historical times. A tephrochronological study. Visindafelag Islendinga, Reykjavik, 1–183.

    Google Scholar 

  • Tsuya, H., 1955. Geological and penological studies of volcano Fuji; 5. On the 1707 eruption of Volcano Fuji. Tokyo Univ. Earthq. Res. Inst. Bull. 33, 341–383.

    Google Scholar 

  • Waitt, R.B., Jr. and Dzurisin, D., 1981. Proximal air-fall deposits from the May 18 eruption — stratigraphy and field sedimentology. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 601–616.

    Google Scholar 

  • Walker, G.P.L., 1971. Grain-size characteristics of pyroclastic deposits. J. Geol. 79, 696–714.

    Article  Google Scholar 

  • Walker, G.P.L., 1972. Crystal concentration in ignimbrites. Contr. Mineral. Petrol. 36, 135–146.

    Article  Google Scholar 

  • Walker, G.P.L., 1973. Explosive volcanic eruptions - a new classification scheme. Geol. Rundsch. 62, 431–446.

    Article  Google Scholar 

  • Walker, G.P.L., 1980. The Taupo Pumice: product of the most powerful known (ultraplinian) eruption J. Volcanol. Geotherm. Res. 8, 69–94.

    Article  Google Scholar 

  • Walker, G.P.L. and Croasdale, R., 1971. Two plinian-type eruptions in the Azores. J. Geol. Soc. London 127, 17–55.

    Article  Google Scholar 

  • Walker, G.P.L., Wilson, L. and Bowell, E.L.G., 1971. Explosive volcanic eruptions -1. The rate and fall of pyroclasts. Geophys. J. Roy. Astron. Soc. 22, 377–383.

    Google Scholar 

  • Wentworth, C.K., 1938. Ash formations of the island of Hawaii. 3rd Sp. Rpt., Hawaiian Volcano Observatory, Honolulu, Hawaii, 1–183.

    Google Scholar 

  • Wentworth, C.K. and Macdonald, G.A., 1953. Structures and forms of basaltic rocks in Hawaii. U.S. Geol. Survey Bull. 994, 1–98.

    Google Scholar 

  • Wilcox, R.E., 1959. Some effects of recent volcanic ash falls with especial reference to Alaska. U. S. Geol. Survey Bull. 1028-N, 409–476.

    Google Scholar 

  • Williams, H., 1952. The great eruption of Coseguina, Nicaragua in 1835. Univ. Calif. Publ. Geol. Sci. 29, 21–46.

    Google Scholar 

  • Williams, H. and Goles, G., 1968. Volume of the Mazama ash-fall and the origin of Crater Lake Cald- era. In Dole, H.M., ed., Andesite Conference Guidebook, Oregon State Dept. Geol. Miner. Indust. Bull. 62,37–41.

    Google Scholar 

  • Wilson, L., 1972. Explosive volcanic eruptions - II. The atmospheric trajectories of pyroclasts. Geophys. J. Roy. Astron. Soc. 30, 381–392.

    Google Scholar 

  • Wilson, L., 1976. Explosive volcanic eruptions - III. Plinian Eruption Columns. Geophys. J. Roy. Astron. Soc. 45, 543–556.

    Google Scholar 

  • Wilson, L. and Huang, T.C., 1979. The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet. Sci. Lett. 44, 311–324.

    Article  Google Scholar 

  • Yokoyama, I., 1957a. Energetics in active volcanoes. 2nd paper. Tokyo Univ. Bull. Earthq. Res. Inst. 35, 75–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, R.V., Schmincke, HU. (1984). Subaerial Fallout Tephra. In: Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74864-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51341-4

  • Online ISBN: 978-3-642-74864-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics