Skip to main content

Magmatic Volatiles and Rheology

  • Chapter
Pyroclastic Rocks

Abstract

There are many questions about magmas that pertain to the origin of pyroclastic rocks. Why are some magmas quietly effusive, others violently explosive, and still others alternate between both characteristics? Why do some magmas build high-standing pyroclastic cones, some build small cinder cones, and still others enormous shield volcanoes or lava plateaus? Some of the most scenic volcanoes are towering cones composed primarily of pyroclastic debris knit together by a skeletal framework of lavas and dikes that help maintain the high-standing edifice. Is the commonly observed change from initial explosive to later more quiet eruptive activity within the same volcano caused by a decrease in the amount of dissolved volatiles, or is it caused by differences in the way rising magma interacts with its environment during its ascent? Which are the most important processes that cause magma to break up into particles?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A.T., 1974a. Before eruption H20 content of some high alumina magmas. Bull. Volcanol. 37, 530–552.

    Article  Google Scholar 

  • Anderson, A.T., 1974b. Chlorine, sulfur, and water in magmas and oceans. Geol. Soc. Amer. Bull. 85, 1485–1492

    Article  Google Scholar 

  • Anderson, A.T., 1975. Some basaltic and andesitic gases. Rev. Geophys. Space Physics 13, 37–55.

    Article  Google Scholar 

  • Aoki, K., Ishiwaka, K. and Kanisawa, S., 1981. Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contr. Mineral. Petrol. 76, 53–59.

    Article  Google Scholar 

  • Basaltic Volcanism Study Project, 1981. Basaltic volcanism on the terrestrial planets. Pergamon Press, Inc., New York, 1–1286.

    Google Scholar 

  • Blackburn, E.A., Wilson, L. and Sparks,R.S.J., 1976. Mechanisms and dynamics of strombolian activity. J. Geol. Soc. London 132, 429–440.

    Article  Google Scholar 

  • Bottinga, Y. and Weill, D.F., 1972. The viscosity of magmatic silicate liquids: A model for calculation. Amer. J. Sci. 272, 438–475.

    Article  Google Scholar 

  • Bottinga, Y., Weill, D.F. and Richet, P., 1981. Thermodynamic modeling of silicate melts. In Newton, R.C., Navrotsky, A. and Wood, B. J., eds., Thermodynamics of Minerals and Melts. Springer-Verlag, New York, Heidelberg, Berlin, 207–245.

    Chapter  Google Scholar 

  • Brey, G., 1976. CO2 solubility mechanisms in silicate melts at high pressures. Contr. Mineral. Petrol. 57, 215–221.

    Article  Google Scholar 

  • Brey, G. and Green, D.H., 1975. The role of C02 in the genesis of olivine melilitite. Contr. Mineral. Petrol. 49, 93–103.

    Article  Google Scholar 

  • Brey, G. and Green, D.H., 1976. Solubility of C02 in olivine melilitite at high pressures and role of CO2 in the earth’s upper mantle. Contr. Mineral. Petrol. 55, 217–230.

    Article  Google Scholar 

  • Brey, G. and Green, D.H., 1977. Systematic study of liquidus phase relations in olivine melilitite + H2O + CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contr. Mineral. Petrol. 61, 141–162.

    Article  Google Scholar 

  • Brey, G. and Schmincke, H.-U., 1980. Origin and diagenesis of the Roque Nublo Breccia, Gran Canaria (Canary Islands)-Petrology of Roque Nublo volcanics, II. Bull. Volcanol. 43–1, 15–33.

    Article  Google Scholar 

  • Burnham, C.W., 1975a. Water and magmas: A mixing model. Geochim. Cosmochim. Acta 39, 1077–1084.

    Article  Google Scholar 

  • Burnham, C.W., 1975b. Thermodynamics of melting in experimental silicate-volatile systems. Fortschr. Mineral. 52, 101–118.

    Google Scholar 

  • Burnham, C.W., 1979. The importance of volatile constituents. In Yoder, H.S., Jr., ed., The evolution of igneous rocks. Princeton Univ. Press, Princeton, N.J., 439–482.

    Google Scholar 

  • Burnham, C.W. and Jahns, R.H., 1962. A method for determining the solubility of water in silicate melts. Amer. J. Sci. 260, 721–745.

    Article  Google Scholar 

  • Carmichael, I.S.E., Turner, F.J., Verhoogen, J., 1974. Igneous Petrology. McGraw-Hill Book Co., New York, 1–739.

    Google Scholar 

  • Delaney, J.R., Muenow, D.W. and Graham, D.G., 1978. Abundance and distribution of water, carbon and sulfur in the glassy rims of submarine pillow basalts. Geochim. Cosmochim. Acta 30, 963–982.

    Google Scholar 

  • Eggler, D.H., 1972. Water-saturated and under-saturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contr. Mineral. Petrol. 34, 261–271.

    Article  Google Scholar 

  • Eggler, D.H., 1973. Role of C02 in melting processes in the mantle. Carnegie Inst. Wash. Yearb. 72, 457–467.

    Google Scholar 

  • Eggler, D.H., 1974. Effect of CO2 on the melting of peridotite. Carnegie Inst. Wash. Yearb. 73, 215–224.

    Google Scholar 

  • Eggler, D.H. and Rosenhauer, M., 1978. Carbon dioxide in silicate melts. II. Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40 kb. Amer. J. Sci. 278, 64–94.

    Article  Google Scholar 

  • Einstein, A., 1906. Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. (Leipzig) 19, 289–306.

    Google Scholar 

  • Epstein, P.S. and Plesset, M.S., 1950. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505–1509.

    Article  Google Scholar 

  • Ewart, A., Hildreth, W. and Carmichael, I.S.E., 1975. Quaternary acid magma in New Zealand. Contr. Mineral. Petrol. 51, 1–27.

    Article  Google Scholar 

  • Friedman, I., 1967. Water and deuterium in pumice from the 1959–1960 eruption of Kilauea Volcano, Hawaii. U. S. Geol. Survey Prof. Paper 575-B, 120–127.

    Google Scholar 

  • Friedman, I., Long, W., Smith, R.L., 1963. Viscosity and water content of rhyolite glass. J. Geophys. Res. 68, 6523–6535.

    Google Scholar 

  • Garcia, M., Liu, N.W.K. and Muenow, D.W., 1979. Volatiles in submarine volcanic rocks from the Mariana Island arc and trough. Geochim. Cosmochim. Acta 43, 305–312.

    Article  Google Scholar 

  • Gerlach, T.M., 1981. Restoration of new volcanic gas analyses from basalts of the Afar region: further evidence of CO2-degassing trends. J. Volcanol. Geotherm. Res. 10, 83–91.

    Article  Google Scholar 

  • Gerlach, T.M., 1983. Intrinsic chemical variations in high temperature volcanic gases from basic lavas. Bull. Volcanol. 45, 235–244.

    Article  Google Scholar 

  • Hamilton, D.C., Burnham, C.W., Osborn, E.F., 1964. The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J. Petrol. 5, 21–39.

    Google Scholar 

  • Harris, D.M., 1981. The concentration of CO2 in submarine tholeiitic basalts. J. Geol. 89, 689–701.

    Article  Google Scholar 

  • Harris, D.M., Sato, M., Casadevall, T.J., Rose, W.I., Jr. and Bornhorst, T.J., 1981. Emission rates of CO2 from plume measurements. In Lipman, P.W. and Mullineaux, D.R., The 1980 eruption of Mount St. Helens. U.S. Geol. Survey Prof. Paper 1250, 201–207,

    Google Scholar 

  • Harris, P.G., Kennedy, W.Q. and Scarfe, C.M., 1970. Volcanism versus plutonism - the effect of chemical composition. In Newall, G. and Rast, N., eds., Mechanics of igneous intrusion. Geol. Jour. Spec. Issue 3, Liverpool, 187–200.

    Google Scholar 

  • Haughton, D.R., Roeder, P.L. and Skinner, B.J., 1974. Solubility of sulfur in mafic magmas. Econ. Geol. 69, 451–467.

    Article  Google Scholar 

  • Heald, E.F., Naughton, J.H., Barnes, I.L., 1963. The chemistry of volcanic gases. 2. Use of equilibrium calculations in the interpretation of volcanic gas samples. J. Geophys. Res. 68, 545–557.

    Article  Google Scholar 

  • Hess, P.C., 1971. Polymer model of silicate melt. Geochim. Cosmochim. Acta 35, 289–306.

    Article  Google Scholar 

  • Hildreth, W., 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86, 10153–10192.

    Article  Google Scholar 

  • Holloway, J.R., 1976. Fluids in the evolution of granitic magmas: consequences of finite C02 solubility. Geol. Soc. Amer. Bull. 87, 1513–1518.

    Article  Google Scholar 

  • Holloway, J.R., 1981. Volatile interactions in magma. In Newton, R.C., Navrotsky, A. and Wood, B.J., eds., Thermodynamics of minerals and melts. Springer-Verlag, Berlin, Heidelberg, New York, 273–293.

    Chapter  Google Scholar 

  • Hulme, G., 1974. The interpretation of lava flow morphology. Geophys. J. Roy. Astron. Soc. 39, 361–383.

    Google Scholar 

  • Kadik, A.A., Lukanin, O.A., Lebedev, Y.B. and Korovushkina, E.Y., 1972. Solubility of H2O and CO2 in granite and basalt melts at high pressures. Geochem. Internat. 6, 1041–1050.

    Google Scholar 

  • Katsura, T. and Nagashima, S., 1974. Solubility of sulfur in magmas. Geochim. Cosmochim. Acta 38, 517–531.

    Article  Google Scholar 

  • Kennedy, G.C., 1955. Some aspects of the role of water in rock melts. In Poldervaart, A., ed., Crust of the Earth. Geol. Soc. Amer. Sp. Paper 62, 489–504.

    Google Scholar 

  • Killingley, J.S. and Muenow, D.W., 1975. Volatiles from Hawaiian submarine basalts determined by dynamic high temperature mass spectrometry. Geochim. Cosmochim. Acta 39, 1467–1473.

    Article  Google Scholar 

  • Kushiro, I., Yoder, H.S., Jr. and Mysen, B.O., 1976. Viscosities of basalt and andesite melts at high pressures. J. Geophys. Res. 81, 6351–6356.

    Article  Google Scholar 

  • Lipman, P.W. and Friedman, I., 1975. Interaction of meteoric water with magma: An oxygen-isotope study of ash-flow sheets from southern Nevada. Geol. Soc. Amer. Bull. 86, 695–702.

    Article  Google Scholar 

  • Lipman, P.W. and Mullineaux, eds., 1981. The 1980 eruptions of Mount St. Helens. U.S. Geol. Survey Prof. Paper 1250, 1–844.

    Google Scholar 

  • Mathez, E.A., 1976. Sulfur solubility and magmatic sulfides in submarine basalts. J. Geophys. Res. 81, 4269–4276.

    Article  Google Scholar 

  • Matsuo, S., 1961. On the chemical nature of fumarolic gases of volcano Showashinzan, Hokkaido, Japan. J. Sci. Nagoya Univ. 9, 80–100.

    Google Scholar 

  • McBirney, A.R., 1963. Factors governing the nature of submarine volcanism. Bull. Volcanol. 26, 455–469.

    Article  Google Scholar 

  • McBirney, A.R., 1973. Factors governing the intensity of explosive andesitic eruptions. Bull. Volcanol. 36, 443–453.

    Article  Google Scholar 

  • McBirney, A. and Murase, T., 1971. Factors governing the formation of pyroclastic rocks. Bull. Volcanol. 34, 372–384.

    Article  Google Scholar 

  • McBirney, A., Sutter, J.F., Naslund, H.R., Sutton, K.G. and White, C.M., 1974. Episodic volcanism in the central Oregon Cascade range. Geology 2, 585–589.

    Article  Google Scholar 

  • Moore, J.G., 1965. Petrology of deep-sea basalt near Hawaii. Amer. J. Sci. 263, 40–52.

    Article  Google Scholar 

  • Moore, J.G., 1970. Water content of basalt erupted on the ocean floor. Contr. Mineral. Petrol. 28, 272–279.

    Article  Google Scholar 

  • Moore, J.G., 1979. Vesicularity and C02 in mid-ocean ridge basalt. Nature 282, 250–253.

    Article  Google Scholar 

  • Moore, J.G. and Fabbi, B.P., 1971. An estimate of the juvenile sulfur content of basalt. Contr. Mineral. Petrol. 23, 118–127.

    Article  Google Scholar 

  • Moore, J.G. and Schilling, J.G., 1973. Vesicles, water, and sulfur in Reykjanes Ridge basalts. Contr. Mineral. Petrol. 41, 105–118.

    Article  Google Scholar 

  • Moore, J.G., Batchelder, J.N. and Cunningham, C.G., 1977. CO2-filled vesicles in mid-ocean basalt. J. Volcanol. Geotherm. Res. 2, 309–327.

    Article  Google Scholar 

  • Muenow, D.W., Lin, N.W.K., Garcia, M.O. and Saunders, A.D., 1980. Volatiles in submarine volcanic rocks from the spreading axis of the East Scotia Sea back-arc basin. Earth Planet. Sci. Lett. 47, 272–278.

    Article  Google Scholar 

  • Murase, T., 1962. Viscosity and related properties of volcanic rocks at 800° to 1400 °C. Jour. Fac. Sci., Hokkaido Univ., Ser. VII, 1, 487–584.

    Google Scholar 

  • Murase, T. and McBirney, A.R., 1973. Properties of some common igneous rocks and their melts at high temperature. Geol. Soc. Amer. Bull. 84, 3563–3592.

    Article  Google Scholar 

  • Murck, B.W., Burns, R.C. and Hollister, I.S., 1978. Phase equilibria of fluid inclusions in ultramafic xenoliths. Amer. Mineral. 63, 40–46.

    Google Scholar 

  • Mysen, B.O., 1977. The solubility of H2O and CO2 under predicted magma genesis conditions and some penological and geophysical considerations. Rev. Geophys. Space Phys. 15, 351–361.

    Article  Google Scholar 

  • Mysen, B.O. and Virgo, D., 1980. The solubility behavior of CO2 in melts on the join NaAl3O8-CaAl2- Si2O8-CO2 at high pressures and temperatures: a Raman spectroscopic study. Amer. Mineral. 65, 1166–1175.

    Google Scholar 

  • Mysen, B.O., Virgo, D. and Kushiro, I., 1981. The structural role of aluminum in silicate melts - a Raman spectroscopic study at 1 atmosphere. Amer. Mineral. 66, 678–701.

    Google Scholar 

  • Mysen, B.O., Virgo, D. and Scarfe, C.M., 1980. Relations between the anionic structure and viscosity of silicate melts — a Raman spectroscopic study. Amer. Mineral. 65, 690–710.

    Google Scholar 

  • Mysen, B.O., Virgo, D. and Seifert, F., 1982. The structure of silicate melts: Implications for chemical and physical properties of natural magma. Rev. Geophys. Space Phys. 20, 353–383.

    Article  Google Scholar 

  • Newton, R.C., Navrotsky, A. and Wood, B.J., eds., 1981. Thermodynamics of minerals and melts. Springer-Verlag, Berlin, Heidelberg, New York, 1–304.

    Google Scholar 

  • Nicholls, I.A., Ringwood, A.E., 1973. Effect of water on olivine stability in tholeiites and the production of silica-saturated magmas in the island-arc environment. J. Geol. 81, 285–300.

    Article  Google Scholar 

  • Noll, H., 1967. Maare und maar-ähnliche Explosionskrater in Island. Köln Univ. Geol. Inst. Sonderveröffentlichungen, 1–117.

    Google Scholar 

  • Nordlie, B.E., 1971. The composition of the magmatic gas of Kilauea and its behavior in the near-surface environment. Amer. J. Sci. 271, 417–463.

    Article  Google Scholar 

  • Ollier, C.D., 1967. Maars, their characteristics, varieties and definition. Bull. Volcanol. 31, 45–73.

    Article  Google Scholar 

  • Ringwood, A.E., 1975. Composition and petrology of the earth’s mantle. McGraw-Hill, Inc., New York, 1–618.

    Google Scholar 

  • Ritchey, J.L. and Eggler, D.H., 1978. Amphibole stability in a differentiated calc-alkaline magma chamber: An experimental investigation. Carnegie Inst. Wash. Yearb. 77, 790–793.

    Google Scholar 

  • Roedder, E., 1972. Composition of fluid inclusions. U.S. Geol. Survey Prof. Paper 440-JJ, 1–64.

    Google Scholar 

  • Roedder, E. and Coombs, D.S., 1967. Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island: J. Petrol. 8, 417–451.

    Google Scholar 

  • Rose, W.I., Jr., 1977. Scavenging of volcanic aerosol by ash — atmospheric and volcanologic implications. Geology 5, 621–624.

    Article  Google Scholar 

  • Ross, C.S., 1964. Volatiles in volcanic glasses and their stability relations. Amer. Mineral. 49, 258–269.

    Google Scholar 

  • Ross, C.S. and Smith, R.L., 1955. Water and other volatiles in volcanic glass. Amer. Mineral. 40, 1071–1089.

    Google Scholar 

  • Sakai, H., Casadevall, T.J. and Moore, J.G., 1982. Chemistry and isotope values of sulfur in basalts and volcanic gases at Kilauea Volcano, Hawaii. Geochim. Cosmochim. Acta 46, 729–738.

    Article  Google Scholar 

  • Sapper, K., 1927. Vulkankunde. J. Engelhorns Nachf., Stuttgart, 1–424.

    Google Scholar 

  • Schmincke, H.-U., 1969a. Ignimbrite sequence on Gran Canaria. Bull. Volcanol. 33, 1199–1219.

    Article  Google Scholar 

  • Schmincke, H.-U., 1976. Geology of the Canary Islands. In Kunkel, G., ed., Biogeography and Ecology in the Canary Islands. W. Junk, The Hague, 67–184.

    Chapter  Google Scholar 

  • Schmincke, H.-U., 1977b. Phreatomagmatische Phasen in quartären Vulkanen der Osteifel. Geol. Jahrb. 39, 3–45.

    Google Scholar 

  • Scrope, J.P., 1862. Volcanoes. The character of their phenomena, their share in the structure and composition of the surface of the globe, and their relation to its internal forces. 2nd ed., Longman, Green, Longmans and Roberts, London, 1–490.

    Google Scholar 

  • Sekine, T., Katsura, T., Aramaki, S., 1979. Water-saturated phase relations of some andesites with application to the estimation of the initial temperature and water pressure at the time of eruption. Geochim. Cosmochim. Acta 43, 1367–1376.

    Article  Google Scholar 

  • Shaw, H.R., 1963. 0bsidian-H20 viscosities at 1000 and 2000 bars in the temperature range 700° to 900 °C. J. Geophys. Res. 68, 6337–6343.

    Google Scholar 

  • Shaw, H.R., 1965. Comments on viscosity, crystal settling, and convection in granitic magmas. Amer. J. Sci. 263, 120–152.

    Article  Google Scholar 

  • Shaw, H.R., 1969. Rheology of basalt in the melting range. J. Petrol. 10, 510–535.

    Google Scholar 

  • Shaw, H.R., 1972. Viscosities of magmatic silicate liquids: An empirical method of prediction. Amer. J. Sci. 272, 870–893.

    Article  Google Scholar 

  • Shaw, H.R., 1974. Diffusion of H2O in granitic liquids: Part I, Experimental data; Part II, Mass transfer in magma chambers. In Hoffmann, A.W., Giletti, B.J., Yoder, H.S., Jr., Yund, R.A., eds., Geochemical transport and kinetics. Carnegie Inst. Wash. Publ. 634, 139–170.

    Google Scholar 

  • Shaw, H.R., Peck, D.L., Wright, T.L. and Okamura, R., 1968. The viscosity of basaltic magma: An analysis of field measurements in Makaopuhi lava lake, Hawaii. Amer. J. Sci. 266, 225–264.

    Article  Google Scholar 

  • Shepherd, E.S., 1938. The gases in rocks and some related problems. Amer. J. Sci. 35A, 311–351.

    Google Scholar 

  • Sommer, M.A., 1977. Volatiles H2O, CO2, and CO in silicate melt inclusions in quartz phenocrysts from the rhyolitic Bandelier air-fall and ash-flow tuff, New Mexico. J. Geol. 85, 423–432.

    Article  Google Scholar 

  • Sparks, R.S.J., 1978. The dynamics of bubble formation and growth in magmas: A review and analysis. J. Volcanol. Geotherm. Res. 3, 1–37.

    Article  Google Scholar 

  • Spera, F.J., 1980. Aspects of magma transport. In Hargraves, R.B., ed., Physics of magmatic processes. Princeton Univ. Press. Princeton, N.J., 265–323.

    Google Scholar 

  • Spera, F.J., 1984. Ascent of basaltic magma. Contr. Mineral. Petrol, (in press).

    Google Scholar 

  • Spera, F. and Bergman, S.C., 1980. Carbon dioxide in igneous petrogenesis. I, Aspects of the dissolution of CO2 in silicate liquids. Contr. Mineral. Petrol. 74, 55–66.

    Article  Google Scholar 

  • Stoiber, R.E., Williams, S.N., Malinconico, L.L., Johnston, D.A. and Casadevall, T.S., 1981. Mt. St. Helens: evidence of increased magmatic gas component. J. Volcanol. Geotherm. Res. 11, 203–212.

    Article  Google Scholar 

  • Stolper, E., 1982. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620.

    Article  Google Scholar 

  • Swanson, D.A. and Fabbi, B.P., 1973. Loss of volatiles during fountaining and flowage of basaltic lava at Kilauea volcano, Hawaii. U.S. Geol. Survey J. Res. 1, 649–658.

    Google Scholar 

  • Taylor, M. and Brown, G.E., 1979. Structure of mineral glasses. I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim. Cosmochim. Acta 43, 61–77.

    Article  Google Scholar 

  • Tazieff, H., 1970. New investigations on eruptive gases. Bull. Volcanol. 34, 421–438.

    Article  Google Scholar 

  • Urbain, G., Bottinga, Y. and Richet, P., 1982. Viscosity of liquid silica, silicates and alumino-silicates. Geochim. Cosmochim. Acta 46, 1061–1072.

    Article  Google Scholar 

  • Verhoogen, J., 1951. Mechanics of ash formation. Amer. J. Sci. 249, 729–739.

    Article  Google Scholar 

  • Waff, H.S., 1975. Pressure-induced coordination changes in magmatic liquids. Geophys. Res. Lett. 2, 193–196.

    Article  Google Scholar 

  • Watson, E.B., Sneeriger, M.A. and Ross, A., 1982. Diffusion of dissolved carbonate in magmas: experimental results and applications. Earth Planet. Sci. Lett. 61, 346–358.

    Article  Google Scholar 

  • Wendtlandt, R.F. and Harrison, W.J., 1979. Rare earth partitioning between immiscible carbonate and silicate liquids and C02 vapor: results and implications for the formation of light rare earth-enriched rocks. Contr. Mineral. Petrol. 69, 409–419.

    Article  Google Scholar 

  • White, D.E. and Waring, G.A., 1963. Volcanic emanations. Data of Geochemistry. U. S. Geol. Survey Prof. Paper 440-K, 1–29.

    Google Scholar 

  • Williams, H. and McBirney, A., 1979. Volcanology. Freeman, Cooper and Co., San Francisco, 1–391.

    Google Scholar 

  • Wilson, L., 1976. Explosive volcanic eruptions - III. Plinian Eruption Columns. Geophys. J. Roy. Astron. Soc. 45, 543–556.

    Google Scholar 

  • Wilson, L. and Head, J.W., III, 1981b. Morphology and rheology of pyroclastic flows and their deposits, and guidelines for future observations. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 513–524.

    Google Scholar 

  • Winkler, H.G.F., 1962. Viel Basalt und wenig Gabbro — wenig Rhyolith und viel Granit. Beitr. Min. Pet. 8, 222–231.

    Article  Google Scholar 

  • Wood, B.R. and Carmichael, I.S.E., 1973. Ptota, PH2O and occurrence of cummingtonite in volcanic rocks. Contr. Mineral. Petrol. 40, 149–158.

    Article  Google Scholar 

  • Wyllie, P.J., 1979. Magmas and volatile components. Amer. Mineral. 64, 469–500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, R.V., Schmincke, HU. (1984). Magmatic Volatiles and Rheology. In: Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74864-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51341-4

  • Online ISBN: 978-3-642-74864-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics