Volcanoes, Volcanic Rocks and Magma Chambers

  • Richard V. Fisher
  • Hans-Ulrich Schmincke


Volcanoes are hills, mounds or sheets of relatively localized igneous rock assemblages made up of pyroclastic rocks, lava flows, and intrusions in varying proportions. Volcanoes differ notably in their geometry, volume, and relative amounts of pyroclastic rocks and lava flows, with differences mostly dependent upon eruptive mechanisms and rates of extrusion. These in turn depend chiefly upon the magma composition. Chemical composition of magma is also responsible for, or can be correlated with, physical properties such as volatiles and viscosity, which govern to a large extent the nature of many pyroclastic eruptions.


Lava Flow Magma Chamber Pyroclastic Flow Basaltic Magma Pyroclastic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A.T., 1974a. Before eruption H20 content of some high alumina magmas. Bull. Volcanol. 37, 530–552.CrossRefGoogle Scholar
  2. Anderson, A.T., 1974b. Chlorine, sulfur, and water in magmas and oceans. Geol. Soc. Amer. Bull. 85, 1485–1492CrossRefGoogle Scholar
  3. Aramaki, S. and Ui, T., 1966. The Aira and Ata pyroclastic flows and related caldera depressions in southern Kyushu, Japan. Bull. Volcanol. 29, 29–47.CrossRefGoogle Scholar
  4. Bailey, R.A., Dalrymple, G.B. and Lanphere, M.A., 1976. Volcanism, structure, and geochronology of Long Valley Caldera, Mono County, California. J. Geophys. Res. 81, 725–744.CrossRefGoogle Scholar
  5. Ballard, R.D. and Moore, J.G., 1977. Photographic atlas of the Mid-Atlantic Ridge. Springer-Verlag, Berlin, Heidelberg, New York, 1–114.Google Scholar
  6. Ballard, R.D. and van Andel, Tj.H., 1977. Morphology and tectonics of the inner rift valley at lat. 36°50′ N on the Mid-Atlantic Ridge. Geol. Soc. Amer. Bull. 88, 507–530.CrossRefGoogle Scholar
  7. Ballard, R.D., Holcomb, R.T. and van Andel, T.H., 1979. The Galapagos Rift at 86° W: 3. Sheet flows, collapse pits, and lava lakes of the rift valley. J. Geophys. Res. 84, 5407–5422.CrossRefGoogle Scholar
  8. Batiza, R., 1982. Abundances, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of non-hotspot volcanoes. Earth Planet. Sci. Lett. 60, 195–206.CrossRefGoogle Scholar
  9. Best, M.G., 1982. Igneous and metamorphic petrology. W.H. Freeman and Co., San Francisco, 1–630.Google Scholar
  10. Bunsen, R., 1851. Über die Prozesse der vulkanischen Gesteinsbildungen Islands. Annal. Phys. Chem. 83, 197–272.CrossRefGoogle Scholar
  11. Carmichael, I.S.E., Turner, F.J., Verhoogen, J., 1974. Igneous Petrology. McGraw-Hill Book Co., New York, 1–739.Google Scholar
  12. Cox, K.G., Bell, J.D. and Pankhust, 1979. The interpretation of igneous rocks. George Allen and Un- win, London, 1–450.Google Scholar
  13. Crisp, J.A., 1984. Rates of magmatism. J. Volcanol. Geotherm. Res. 20 (in press). Google Scholar
  14. Duda, A. and Schmincke, H.-U., 1978. Quaternary basanites, melilite nephelinites and tephrites from the Laacher See area. N. Jb. Min. Mh. 132, 1–33.Google Scholar
  15. Eggler, D.H., 1972. Water-saturated and under-saturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contr. Mineral. Petrol. 34, 261–271.CrossRefGoogle Scholar
  16. Friedman, I., Lipman, P.W., Obradovich, J.D., Christiansen, R.L., 1974. Meteoric water in magmas. Science 184, 1069–1072.CrossRefGoogle Scholar
  17. Fujii, N., 1975. Material and energy production from volcanoes. Bull. Volcanol. Soc. Jap. 20, 197–204 (in Japanese).Google Scholar
  18. Gill, J.B., 1981. Oogenic andesites and plate tectonics. Springer-Verlag, Berlin, Heidelberg, New York, 1–390.Google Scholar
  19. Hildreth, W., 1979. The Bishop Tuff: evidence for the origin of compositional zonation in magma chambers. Geol. Soc. Amer. Sp. Paper 180, 43–75.Google Scholar
  20. Hildreth, W., 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86, 10153–10192.CrossRefGoogle Scholar
  21. Hildreth, W., 1983. The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. J. Volcanol. Geotherm. Res. 18, 1–56.CrossRefGoogle Scholar
  22. Karakuzu, F., Schmincke, H.-U. and Wörner, G., 1982. Aufbau und chemische Entwicklung des quartären basanitisch-tephritischen Rothenberg Vulkans (Osteifel) (Abst.). Fortschr. Min. 60, Beih. I, 109.Google Scholar
  23. Kushiro, I., 1974. Melting of hydrous upper mantle and a possible generation of andesitic magma: an approach from synthetic systems. Earth Planet. Sci. Lett. 22, 294–299.CrossRefGoogle Scholar
  24. Le Maitre, R.W., 1976. The chemical variability of some common igneous rocks. J. Petrol. 17, 589–637.Google Scholar
  25. Lipman, P.W., Christiansen, R.L. and O’Connor, J.T., 1966. A compositionally zoned ash-flow sheet in southern Nevada. U.S. Geol. Survey Prof. Paper 524-F, 1–47.Google Scholar
  26. Lonsdale, P., 1977. Abyssal pahoehoe with lava coils at the Galapagos Rift. Geology 5, 147–152.CrossRefGoogle Scholar
  27. Macdonald, G.A., 1972. Volcanoes. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1–510.Google Scholar
  28. Michael, P. J., 1983. Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes. Geology 11, 31–34.CrossRefGoogle Scholar
  29. Nakamura, K., 1974. Preliminary estimate of global volcanic production rate. In Furumoto, S., Minikami, T. and Yuhara, K., eds., The utilization of volcano energy. Sandia Laboratories, Albuquerque, New Mexico, 273–284.Google Scholar
  30. Press, F. and Siever, R., 1978. Earth. W.H. Freeman and Co., San Francisco, 1–613.Google Scholar
  31. Ringwood, A.E., 1975. Composition and petrology of the earth’s mantle. McGraw-Hill, Inc., New York, 1–618.Google Scholar
  32. Rose, W.I., Jr., Penfield, G.T., Drexler, J.W. and Larson, P.B., 1980. Geochemistry of the andesite flank lavas of three composite cones within the Atitlán Cauldron, Guatemala. Bull. Volcanol. 43, 131–153.CrossRefGoogle Scholar
  33. Sapper, K., 1927. Vulkankunde. J. Engelhorns Nachf., Stuttgart, 1–424.Google Scholar
  34. Schmincke, H.-U., 1969b. Petrologie der phonolithischen bis rhyolithischen Vulkanite auf Gran Canaria, Kanarische Inseln, Habilitationsschrift, Universität Heidelberg, 1–151.Google Scholar
  35. Schmincke, H.-U., 1982a. Volcanic and chemical evolution of the Canary Islands. In von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E., eds., Geology of the Northwest African Continental Mar-gin. Springer-Verlag, Berlin, Heidelberg, New York, 273–308.Google Scholar
  36. Schmincke, H.-U., 1982b. Vulkane und ihre Wurzeln. Rhein. Westf. Akad. Wiss. Westd. Verlag Opladen, Vorträge N 315, 35–78.Google Scholar
  37. Schmincke, H.-U., 1983. Composition and origin of volcanic glasses from Leg 70. In Cann et al., eds., Init. Rpts. Deep Sea Drilling Proj. 69, 451–457.Google Scholar
  38. Sigurdsson, H. and Sparks, R.S.J., 1978. Rifting episodes in north Iceland in 1874–75 and the eruption of Askja and Sveinagja. Bull. Volcanol. 41, 1–19.CrossRefGoogle Scholar
  39. Sigurdsson, H. and Sparks, R.S.J., 1981. Petrology of rhyolitic and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J. Petrol. 22, 41–84.Google Scholar
  40. Simkin, T., Siebert, L., McClelland, L., Bridge, D., Newhall, C. and Latter, J.H., 1981. Volcanoes of the world. Smithsonian Institution, Hutchinson Ross Publ. Co., Stroudsberg, Pa., 1–232.Google Scholar
  41. Smith, R.L., 1979. Ash-flow magmatism. Geol. Soc. Amer. Sp. Paper 180, 5–27.Google Scholar
  42. Smith, R.L. and Bailey, R.A., 1966. The Bandelier Tuff: a study of ash-flow eruption cycles from zoned magma chambers. Bull. Volcanol. 29, 83–104.CrossRefGoogle Scholar
  43. Taylor, H.P., Jr., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 69, 843–883.CrossRefGoogle Scholar
  44. Thorpe, R.S., ed., 1982. Andesites. Orogenic andesites and related rocks. John Wiley and Sons, New York, 1–724.Google Scholar
  45. Tuttle, O.F. and Bowen, N.L., 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Amer. Mem. 74, 1–153.Google Scholar
  46. Van Andel, Tj.H. and Ballard, R.D., 1979. The Galapagos Rift at 86° W:2. Volcanism, structure and evolution of the rift valley. J. Geophys. Res. 84, 5390–5406.CrossRefGoogle Scholar
  47. Walker, G.P.L. and Croasdale, R., 1972. Characteristics of some basaltic pyroclastics. Bull. Volcanol. 35, 303–317.CrossRefGoogle Scholar
  48. Wörner, G. and Schmincke, H.-U., 1984. The Laacher See Volcano I: Mineralogy and geochemical evolution of the Laacher See magma chamber. J. Petrol. 25 (in press).Google Scholar
  49. Wyllie, P.J., 1971. The dynamic earth: Textbook in Geosciences. J. Wiley and Sons, New York, 1–416.Google Scholar
  50. Yoder, H.S., Jr., 1976. Generation of basaltic magma. Natl. Acad. Sci. Washington, 1–264.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Richard V. Fisher
    • 1
  • Hans-Ulrich Schmincke
    • 2
  1. 1.Department of Geological SciencesUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Institut für MineralogieRuhr-Universität BochumBochumGermany

Personalised recommendations