Skip to main content

Stratigraphic Problems of Pyroclastic Rocks

  • Chapter
Pyroclastic Rocks

Abstract

Stratigraphic methods used to study volcanic rocks are similar to those used to study sedimentary rocks and have similar purposes: establishing correlations, vertical time sequences, determining facies changes and the like. Additional aid in pyroclastic stratigraphy comes from igneous petrology, studies of magma evolution, and studies of the growth history of volcanoes. We stress that stratigraphic analysis — (1) mapping and subdivision of volcanic sequences into members, formations and groups, (2) determining vertical and lateral facies changes and (3) interpreting the types of eruptions, and the origin and manner of transport of rock types and the environments of deposition — provides the necessary framework for petrological and geochemical work, and that pyroclastic and epiclastic volcanic rocks often provide the most important parameters for establishing the stratigraphic framework in volcanic areas. Because of the many ways that volcanic sequences originate, however, different stratigraphic and petrologic approaches may be necessary in different situations such as, for example, in areas of plateau basalts, ignimbrite plateaus, clusters of scoria cones, composite andesite volcanoes, deep-sea ash layers or thick nonmarine tuff accumulations. Moreover, stratigraphic problems on active or dormant volcanoes commonly differ from those that must be solved in ancient volcanic regions, such as greenstone belts, or zeolitized volcaniclastic sediments, where the volcanic record may be best preserved in sedimentary accumulations derived by erosion of primary volcanic deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aramaki, S., 1963. Geology of Asama Volcano. Tokyo Univ. Fac. Sci. Jour., sec. II, 14, 233–433.

    Google Scholar 

  • Ayres, L.D., 1977. Importance of stratigraphy in early Precambrian volcanic terranes: cyclic volcanism at Setting Net Lake, northwestern Ontario. Geol. Assoc. Can. Sp. Paper 16, 243–264.

    Google Scholar 

  • Ayres, L.D., 1983. The physical form, environment, and genesis of Precambrian greenstone-belt volcanoes, with particular reference to the Archean of Canada, (personal communication)

    Google Scholar 

  • Blong, R.J., 1982. The time of darkness. Univ. of Wash. Press, Seattle and London, 1–257.

    Google Scholar 

  • Buck, P.S.,1976. An early Precambrian caldera in the Favourable Lake metavolcanic-metasedimentary belt, northwestern Ontario. Centre for Precambrian Studies, University of Manitoba, 1975, Ann. Rpt. 108–115.

    Google Scholar 

  • Cerling, T.E., Biggs, D.L. and Vondra, C.F., 1975. Use of oxygen isotope ratios in correlation of tuffs, east Rudolf Basin, northern Kenya. Earth Planet. Sci. Lett. 25, 291–296.

    Article  Google Scholar 

  • Christiansen, R.L. and Lipman, P.W., 1972. Cenozoic volcanism and plate-tectonic evolution of the western United States. II. Late Cenozoic. Philos. Trans. Roy. Soc. London A 271, 249–284.

    Article  Google Scholar 

  • Cook, H.E., 1975. North American stratigraphic principles as applied to deep-sea sediments. Amer. Assoc. Petrol. Geol. Bull. 59, 817–837.

    Google Scholar 

  • Cunningham, C.G. and Steven, T.A., 1979. Mount Belknap and Red Hills Calderas and associated rocks, Marysvale Volcanic Field, West-Central Utah. U. S. Geol. Survey Bull. 1468, 1–34.

    Google Scholar 

  • Dalrymple, G.S., Cox, A. and Doell, R.R., 1965. Potassium-argon age and paleomagnetism of the Bishop Tuff, California. Geol. Soc. Amer. Bull. 76, 665–674.

    Article  Google Scholar 

  • David, P.P., 1970. Discovery of Mazama ash in Saskatchewan, Canada. Can. J. Earth Sci. 7, 1579–1583.

    Article  Google Scholar 

  • Dickinson, W.R., 1974b. Sedimentation within and beside ancient and modern magmatic arcs. In Dott, Jr., R.H. and Shaver, R.H., eds., Modern and ancient geosynclinal sedimentation, Soc. Econ. Paleont. Mineral. Sp. Publ. 19, 230–239.

    Google Scholar 

  • Dickinson, W.R. and Rich, E.L., 1972. Petrologic intervals and petrofacies in the Great Valley sequence, Sacramento Valley, California. Geol. Soc. Amer. Bull. 83, 3007–3024.

    Article  Google Scholar 

  • Dickinson, W.R. and Vigrass, L.W., 1964. Pre-Cenozoic history of Suplee-Izee district, Oregon: Implications for geosynclinal theory. Geol. Soc. Amer. Bull. 75, 1037–1044.

    Article  Google Scholar 

  • Dimroth, E. and Demarcke, J., 1978. Petrography and mechanism of eruption of the Archean Dalem- bert tuff, Rouyn-Noranda, Quebec, Canada. Can. J. Earth Sci. 15, 1712–1723.

    Article  Google Scholar 

  • Dott, Jr., R.H. and Shaver, R.H., eds., 1974. Modern and ancient geosynclinal sedimentation. Soc. Econ. Paleont. Mineral. Sp. Publ. 19, 1–380.

    Google Scholar 

  • Dunbar, C.O. and Rodgers, J., 1957. Principles of Stratigraphy. John Wiley and Sons, Inc., New York, 1–356.

    Google Scholar 

  • Ewart, A., 1963. Petrology and petrogenesis of the Quaternary pumice ash in the Taupo area, New Zealand. J. Petrol. 4, 392–431.

    Google Scholar 

  • Fisher, R.V., 1966a. Geology of a Miocene ignimbrite layer, John Day Formation, eastern Oregon. Univ. Calif. Publ. Sci. Geol. 67, 1–58.

    Google Scholar 

  • Fisher, R.V., 1968b. Pyrogenic mineral stability, lower member of the John Day Formation, eastern Oregon. Univ. Calif. Publ. Geol. Sci. 75, 1–39.

    Google Scholar 

  • Fisher, R.V. and Rensberger, J.M., 1973. Physical stratigraphy of the John Day Formation. Univ. Calif. Publ. Geol. Sci. 101, 1–45.

    Google Scholar 

  • Francis, E.H., 1967. Review of Carboniferous-Permian volcanicity in Scotland. Geol. Rundsch. 57, 219–246.

    Article  Google Scholar 

  • Francis, E.H., 1970. Review of Carboniferous volcanism in England and Wales. J. Earth Sci., Leeds 8, 41–56.

    Google Scholar 

  • Gwinn, V.E. and Mutch, T.A., 1965. Intertongued Upper Cretaceous volcanic and non-volcanic rocks, central-western Montana. Geol. Soc. Amer. Bull. 76, 1125–1144.

    Article  Google Scholar 

  • Hay, R.L., 1963. Stratigraphy and zeolitic diagenesis of the John Day Formation of Oregon. Univ. Calif. Publ. Geol. Sci. 42, 199–262.

    Google Scholar 

  • Hay, R.L., 1973. Lithofacies and environments of Bed 1, Olduvai Gorge, Tanzania. J. Quat. Res. 3, 541–560.

    Article  Google Scholar 

  • Hay, R.L., 1976. Geology of the Olduvai Gorge: A study of sedimentation in a semiarid basin. Univ. Calif. Press, Berkeley, 1–203.

    Google Scholar 

  • Healy, J., Vucetich, C.G. and Pullar, W.A., 1964. Stratigraphy and chronology of Late Quaternary volcanic ash in Taupo, Rotorua, and Gisborne Districts. N.Z. Geol. Survey Bull. 73, 7–88.

    Google Scholar 

  • Ingersoll, R.V., 1978. Petrofacies and petrologic evolution of the late Cretaceous fore-arc basin, northern and central California. J. Geol. 86, 335–352.

    Article  Google Scholar 

  • Izett, G.A., 1981. Volcanic ash beds: recorders of Upper Cenozoic silicic pyroclastic volcanism in the western United States. J. Geophys. Res. 86, 10200–10222.

    Article  Google Scholar 

  • Izett, G.A., Wilcox, R.E. and Borchardt, G.A., 1972. Correlation of a volcanic ash bed in Pleistocene deposits near Mount Blanco, Texas, with the Guaje Pumice Bed of the Jemez Mountains, New Mexico. Quat. Res. 2, 554–578.

    Article  Google Scholar 

  • Kuenzi, W.D., Horst, O.H. and McGehee, R.V., 1979. Effect of volcanic activity on fluvial-deltaic sedimentation on a modern arc-trench gap, southwestern Guatemala. Geol. Soc. Amer. Bull. Pt. I 90, 827–838.

    Article  Google Scholar 

  • Lajoie, J., 1979. Faciès models 15. Volcaniclastic rocks. Geoscience Can. 6, no. 3, 129–139.

    Google Scholar 

  • Larsen, E.S., Jr. and Cross, W., 1956. Geology and petrology of the San Juan region, southwestern Colorado. U.S. Geol. Survey Prof. Paper 258, 1–303.

    Google Scholar 

  • Lichtblau, A.P. and Dimroth, E., 1980. Stratigraphy and facies at the south margin of the Archean Noranda Caldera, Noranda, Quebec. In Current Research, Pt. A, Geol. Survey Can. Paper 80–1 A, 69–79.

    Google Scholar 

  • Lipman, P.W., 1968. Geology of Summer Coon volcanic center, eastern San Juan Mountains, Colorado. In Epis, R.C., ed., Cenozoic volcanism in the southern Rocky Mountains. Colo. School of Mines Qt. 63, 211–236.

    Google Scholar 

  • Lipman, P.W., 1975. Evolution of the Platoro Caldera complex and related volcanic rocks, southeastern San Juan Mountains, Colorado. U. S. Geol. Survey Prof. Paper 852, 1–128.

    Google Scholar 

  • Lipman, P.W. and Steven, T.A., 1970. Reconnaissance geology and economic significance of the Platoro Caldera, south-eastern San Juan Mountains, Colorado. In Geol. Survey Res. 1970. U.S. Geol. Survey Prof. Paper 700-C, C19–C29.

    Google Scholar 

  • Lipman, P.W., Prostka, H.J. and Christiansen, R.L., 1972. Cenozoic volcanism and plate-tectonic evolution of the Western United States. I. Early and Middle Cenozoic. Phil. Trans. Roy. Soc. London A 271, 217–248.

    Article  Google Scholar 

  • Lipman, P.W., Steven, T.A. and Mehnert, H.H., 1970. Volcanic history of the San Juan Mountains, Colorado, as indicated by potassium—argon dating. Geol. Soc. Amer. Bull. 81, 2329–2352.

    Article  Google Scholar 

  • Lipman, P.W., Doe, B.R., Hedge, C.E. and Steven, T.A., 1978. Petrologic evolution of the San Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence. Geol. Soc. Amer. Bull, 89, 59–82.

    Article  Google Scholar 

  • Lipman, P.W., Steven, T.A., Luedke, R.G. and Burbank, W.S., 1973. Revised volcanic history of the San Juan, Uncompahgre, Silverton, and Lake City calderas in the western San Juan Mountains, Colorado. U.S. Geol. Survey J. Res. 1, 627–642.

    Google Scholar 

  • Luedke, R.G. and Burbank, W.S., 1963. Tertiary volcanic stratigraphy in the western San Juan Mountains. In Short papers in geology and hydrology. U.S. Geol. Survey Prof. Paper 475-C, C39–C44.

    Google Scholar 

  • Luedke, R.G. and Burbank, W.S., 1968. Volcanism and cauldron development in the western San Juan Mountains, Colorado. In Epis, R.C., ed., Cenozoic volcanism in southern Rocky Mountains. Colo. School Mines Quart. 63, 175–208.

    Google Scholar 

  • Matthews, R.K., 1974. Dynamic stratigraphy. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1–370.

    Google Scholar 

  • Merriam, J.C., 1901. A contribution to the geology of the John Day Basin (Oregon). Univ. Calif. Publ.Geol. Sci. 2, 269–314.

    Google Scholar 

  • Momose, K., Kobayashi, K., Minagawa, K. and Michida, M., 1968. Identification of tephra by means of ferro-magnetic minerals in pumice. Tokyo Univ Earthq. Res. Inst. Bull. 46, 1275–1292.

    Google Scholar 

  • Mullineaux, D.R., 1974. Pumice and other pyroclastic deposits in Mount Rainier National Park, Washington. U.S. Geol. Survey Bull. 1326, 1–83.

    Google Scholar 

  • Naeser, C.W., Briggs, N.D., Obradovich, J.D. and Izett, G.A., 1981. Geochronology of Quaternary tephra deposits. In Self, S. and Sparks, R.S.J., eds., Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 13–47.

    Google Scholar 

  • Nakamura, K., 1964. Volcano-stratigraphic study of Oshima Volcano Izu. Tokyo Univ. Earthq. Res. Inst. Bull. 42, 649–728.

    Google Scholar 

  • North American Commission on Stratigraphie Nomenclature, 1983. North American Stratigraphic Code. Amer. Assoc. Petrol. Geol. Bull. 67, 841–875.

    Google Scholar 

  • Packham, G.H., 1968. The Lower and Middle Palaeozoic stratigraphy and sedimentary tectonics of the Sofala-Hill End-Euchareena region, N.S.W. Proc. Linnean Soc. New South Wales 93, Part 1, 111–163.

    Google Scholar 

  • Parsons, W.H., 1969. Criteria for the recognition of volcanic breccias: Review. Geol. Soc. Amer. Mem. 115, 263–304.

    Google Scholar 

  • Peck, D.L., Griggs, A.B., Schlicker, H.G., Wells, F.G. and Dole, H.M., 1964. Geology of the central and northern parts of the western Cascade Range in Oregon. U.S. Geol. Survey Prof. Paper 449, 1–56.

    Google Scholar 

  • Pettijohn, F.J., 1975. Sedimentary rocks. 3rd Edition, Harper and Row, Publishers, New York, 1–628.

    Google Scholar 

  • Pettijohn, F.J., Potter, P.E. and Siever, R., 1972. Sand and Sandstone. Springer-Verlag Berlin, Heidelberg, New York, 1–618.

    Google Scholar 

  • Reading, H.G., ed., 1978. Sedimentary environments and facies. Elsevier, Amsterdam, 1–557.

    Google Scholar 

  • Reynolds, R.L., 1975. Paleomagnetism of the Yellowstone tuffs and their associated airfall ashes. Univ. Colorado, Boulder, Ph.D. diss., 1–268.

    Google Scholar 

  • Roedder, E. and Smith, R.L., 1965. Liquid water in pumice vesicles, a crude but useful dating method (Abst.). Geol. Soc. Amer. Sp. Paper 82, Abst. for 1964, 164.

    Google Scholar 

  • Rubel, D.H., 1971. Independence Volcano: A major Eocene eruptive center, northern Absaraka volcanic province. Geol. Soc. Amer. Bull. 82, 2473–2494.

    Article  Google Scholar 

  • Sarna-Wojcicki, A.M., Shipley, S., Waitt, R.B., Jr., Dzurisin, D. and Wood, S.H., 1981. Areal distribution, thickness, mass, volume, and grain size of air-fall ash from six major eruptions of 1980. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 577–600.

    Google Scholar 

  • Schmincke, H.-U., 1977b. Phreatomagmatische Phasen in quartären Vulkanen der Osteifel. Geol. Jahrb. 39, 3–45.

    Google Scholar 

  • Schmincke, H.-U. and von Rad, U., 1979. Neogene evolution of Canary Island volcanism inferred from ash layers and volcaniclastic sandstones of DSDP site 397 (Leg 47A). In von Rad, U., Ryan, W.B.F., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 47, pt. I, 703–725.

    Google Scholar 

  • Schmincke, H.-U., Fisher, R.V. and Waters, A.C., 1973. Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20, 553–574.

    Article  Google Scholar 

  • Self, S. and Sparks, R.S.J., eds., 1981. Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 1–481.

    Google Scholar 

  • Selley, R.C., 1978. Ancient sedimentary environments. 2nd Ed., Cornell Univ. Press, New York, 1–287.

    Google Scholar 

  • Simkin, T., Siebert, L., McClelland, L., Bridge, D., Newhall, C. and Latter, J.H., 1981. Volcanoes of the world. Smithsonian Institution, Hutchinson Ross Publ. Co., Stroudsberg, Pa., 1–232.

    Google Scholar 

  • Smedes, H.W. and Prostka, H.J., 1972. Stratigraphic framework of the Absaroka Volcanic Supergroup in the Yellowstone National Park region. U.S. Geol. Survey Prof. Paper 729-C, C1 - C33.

    Google Scholar 

  • Smith, R.L. and Bailey, R.A., 1968. Resurgent cauldrons. Geol. Soc. Amer. Mem. 116, 613–662.

    Google Scholar 

  • Stanley, K.O., 1976. Sandstone petrofacies in the Cenozoic High Plains sequence, eastern Wyoming and Nebraska. Geol. Soc. Amer. Bull. 87, 297–309.

    Article  Google Scholar 

  • Stearns, H.T., 1925. The explosive phase of Kilauea Volcano, Hawaii in 1924. Bull. Volcanol. 5, 1–16.

    Google Scholar 

  • Steen, V.C. and Fryxell, R., 1965. Mazama and Glacier Peak pumice: Uniformity of refractive index after weathering. Science 150, 878–880.

    Article  Google Scholar 

  • Steen-Mclntyre, V.C., 1977. A manual for tephrochronology. Idaho Springs, Colorado, 1–167.

    Google Scholar 

  • Steven, T.A., 1975. Middle Tertiary volcanic field in the southern Rocky Mountains. In Curtis, B.F., ed., Cenozoic history of the southern Rocky Mountains. Geol. Soc. Amer. Mem. 144, 75–94.

    Google Scholar 

  • Steven, T.A. and Lipman, P.W., 1968. Central San Juan cauldron complex, Colorado. In Epis, R.C., ed., Cenozoic volcanism in the southern Rocky Mountains. Colo. School Mines Qt. 63, 241–258.

    Google Scholar 

  • Steven, T.A. and Lipman, P.W., 1976. Calderas of the San Juan volcanic field, southwestern Colorado. U.S. Geol. Survey Prof. Paper 958, 1–35.

    Google Scholar 

  • Steven, T.A. and Ratté, J.C., 1964. Revised Tertiary volcanic sequence in the central San Juan Mountains, Colorado. In Short papers in geology and hydrology. U.S. Geol. Survey Prof. Paper 475-D, D54–D63.

    Google Scholar 

  • Steven, T.A. and Ratté, J.C., 1965. Geology and structural control of ore deposition in the Creede district, San Juan Mountains, Colorado. U.S. Geol. Survey Prof. Paper 487, 1–90.

    Google Scholar 

  • Steven, T.A., Mehnert, H.H. and Obradovich, J.D., 1967. Age of volcanic activity in the San Juan Mountains, Colorado. In Geological Survey Research 1967. U.S. Geol. Survey Prof. Paper 575-D, D47–D55. 13

    Google Scholar 

  • Steven, T.A., Cunningham, C.G., Naeser, C.W. and Mehnert, H.H., 1979. Revised stratigraphy and radiometric ages of volcanic rocks and mineral deposits in the Marysvale area, West Central Utah. U. S. Geol. Survey Bull. 1469, 1–40.

    Google Scholar 

  • Steven, T.A., Lipman, P.W., Hail, W.J., Jr., Barker, F. and Luedke, R.G., 1974. Geologic map of the Durango quadrangle, southwestern Colorado. U. S. Geol. Survey Misc. Geol. Inv. Map 1–764.

    Google Scholar 

  • Tassé, N., Lajoie, J. and Dimroth, E., 1978. The anatomy and nterpretation of an Archean volcaniclastic sequence, Noranda region, Quebec. Can. J. Earth Sci. 15, 874–888.

    Article  Google Scholar 

  • Thorarinsson, S., 1944. Tefrokronologiska studier pa Island. Geogr. Analer 1–203 (English summary, p. 204 – 215 ).

    Google Scholar 

  • Thorarinsson, S., 1974. The terms tephra and tephrochronology. In Westgate, J.A. and Gold, C.M., eds., World bibliography and index of Quaternary tephrochronology. Printing Services Dept., Univ. of Alberta (Canada), 1–528.

    Google Scholar 

  • Thorarinsson, S., 1981. Tephra studies and tephrochronology: A historical review with special reference to Iceland. In Self, S. and Sparks, R.S.J., eds., Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 1–12.

    Google Scholar 

  • Turner, D.L., 1970. Potassium-argon dating of Pacific coast Miocene foraminiferal stages. Geol. Soc. Amer. Sp. Paper 124, 91–129.

    Google Scholar 

  • Vessel, R.K. and Davies, D.K., 1981. Nonmarine sedimentation in an active fore arc basin. Soc. Econ. Paleont. Mineral. Publ. 31, 31–45.

    Google Scholar 

  • Vitaliano, D.B., ed., 1982. World bibliography and index of Quaternary tephrochronology. Supplement No. 1. Geobooks. Regency House, Norwich, England, 1–194.

    Google Scholar 

  • Waitt, R.B., Jr. and Dzurisin, D., 1981. Proximal air-fall deposits from the May 18 eruption — stratigraphy and field sedimentology. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 601–616.

    Google Scholar 

  • Walker, R.G., ed., 1979. Facies models. Geoscience Can., Reprint Series 1, 1–211.

    Google Scholar 

  • Westgate, J.A. and Gold, C.M., 1974. World bibliography and index of Quaternary tephrochronology. Printing Services Dept., Univ. of Alberta (Canada), 1–528.

    Google Scholar 

  • Westgate, J.A. and Gorton, M.P., 1981. Correlation techniques in tephra studies. In Self, S. and Sparks, R.S.J., eds., Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 73–94.

    Google Scholar 

  • Wheeler, H.E. and Mallory, V.S., 1953. Designation of stratigraphic units. Amer. Assoc. Petrol. Geol. Bull. 37, 2407–2421.

    Google Scholar 

  • Wilcox, R.E., 1965. Volcanic ash chronology. In Wright, H.E., Jr. and Frey, D.G., eds., Quaternary of the United States. Princeton Univ. Press, Princeton, N.J., 807–816.

    Google Scholar 

  • Winter, J., 1981. Exakte tephro-stratigraphische Korrelation mit morphologisch differenzierten Zir- konpopulationen ( Grenzbereich Unter/Mitteldevon, Eifel-Ardennen). N. Jb. Geol. Pal. Abh. 162, 1–56.

    Google Scholar 

  • Wolf, K.H. and Ellison, B., 1971. Sedimentary geology of the zeolitic volcanic lacustrine Pliocene Rome beds, Oregon, 1. Sed. Geol. 6, 271–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, R.V., Schmincke, HU. (1984). Stratigraphic Problems of Pyroclastic Rocks. In: Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74864-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51341-4

  • Online ISBN: 978-3-642-74864-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics