Advertisement

Stratigraphic Problems of Pyroclastic Rocks

  • Richard V. Fisher
  • Hans-Ulrich Schmincke

Abstract

Stratigraphic methods used to study volcanic rocks are similar to those used to study sedimentary rocks and have similar purposes: establishing correlations, vertical time sequences, determining facies changes and the like. Additional aid in pyroclastic stratigraphy comes from igneous petrology, studies of magma evolution, and studies of the growth history of volcanoes. We stress that stratigraphic analysis — (1) mapping and subdivision of volcanic sequences into members, formations and groups, (2) determining vertical and lateral facies changes and (3) interpreting the types of eruptions, and the origin and manner of transport of rock types and the environments of deposition — provides the necessary framework for petrological and geochemical work, and that pyroclastic and epiclastic volcanic rocks often provide the most important parameters for establishing the stratigraphic framework in volcanic areas. Because of the many ways that volcanic sequences originate, however, different stratigraphic and petrologic approaches may be necessary in different situations such as, for example, in areas of plateau basalts, ignimbrite plateaus, clusters of scoria cones, composite andesite volcanoes, deep-sea ash layers or thick nonmarine tuff accumulations. Moreover, stratigraphic problems on active or dormant volcanoes commonly differ from those that must be solved in ancient volcanic regions, such as greenstone belts, or zeolitized volcaniclastic sediments, where the volcanic record may be best preserved in sedimentary accumulations derived by erosion of primary volcanic deposits.

Keywords

Debris Flow Volcanic Rock Instrumental Neutron Activation Analysis Lava Flow Pyroclastic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aramaki, S., 1963. Geology of Asama Volcano. Tokyo Univ. Fac. Sci. Jour., sec. II, 14, 233–433.Google Scholar
  2. Ayres, L.D., 1977. Importance of stratigraphy in early Precambrian volcanic terranes: cyclic volcanism at Setting Net Lake, northwestern Ontario. Geol. Assoc. Can. Sp. Paper 16, 243–264.Google Scholar
  3. Ayres, L.D., 1983. The physical form, environment, and genesis of Precambrian greenstone-belt volcanoes, with particular reference to the Archean of Canada, (personal communication)Google Scholar
  4. Blong, R.J., 1982. The time of darkness. Univ. of Wash. Press, Seattle and London, 1–257.Google Scholar
  5. Buck, P.S.,1976. An early Precambrian caldera in the Favourable Lake metavolcanic-metasedimentary belt, northwestern Ontario. Centre for Precambrian Studies, University of Manitoba, 1975, Ann. Rpt. 108–115.Google Scholar
  6. Cerling, T.E., Biggs, D.L. and Vondra, C.F., 1975. Use of oxygen isotope ratios in correlation of tuffs, east Rudolf Basin, northern Kenya. Earth Planet. Sci. Lett. 25, 291–296.CrossRefGoogle Scholar
  7. Christiansen, R.L. and Lipman, P.W., 1972. Cenozoic volcanism and plate-tectonic evolution of the western United States. II. Late Cenozoic. Philos. Trans. Roy. Soc. London A 271, 249–284.CrossRefGoogle Scholar
  8. Cook, H.E., 1975. North American stratigraphic principles as applied to deep-sea sediments. Amer. Assoc. Petrol. Geol. Bull. 59, 817–837.Google Scholar
  9. Cunningham, C.G. and Steven, T.A., 1979. Mount Belknap and Red Hills Calderas and associated rocks, Marysvale Volcanic Field, West-Central Utah. U. S. Geol. Survey Bull. 1468, 1–34.Google Scholar
  10. Dalrymple, G.S., Cox, A. and Doell, R.R., 1965. Potassium-argon age and paleomagnetism of the Bishop Tuff, California. Geol. Soc. Amer. Bull. 76, 665–674.CrossRefGoogle Scholar
  11. David, P.P., 1970. Discovery of Mazama ash in Saskatchewan, Canada. Can. J. Earth Sci. 7, 1579–1583.CrossRefGoogle Scholar
  12. Dickinson, W.R., 1974b. Sedimentation within and beside ancient and modern magmatic arcs. In Dott, Jr., R.H. and Shaver, R.H., eds., Modern and ancient geosynclinal sedimentation, Soc. Econ. Paleont. Mineral. Sp. Publ. 19, 230–239.Google Scholar
  13. Dickinson, W.R. and Rich, E.L., 1972. Petrologic intervals and petrofacies in the Great Valley sequence, Sacramento Valley, California. Geol. Soc. Amer. Bull. 83, 3007–3024.CrossRefGoogle Scholar
  14. Dickinson, W.R. and Vigrass, L.W., 1964. Pre-Cenozoic history of Suplee-Izee district, Oregon: Implications for geosynclinal theory. Geol. Soc. Amer. Bull. 75, 1037–1044.CrossRefGoogle Scholar
  15. Dimroth, E. and Demarcke, J., 1978. Petrography and mechanism of eruption of the Archean Dalem- bert tuff, Rouyn-Noranda, Quebec, Canada. Can. J. Earth Sci. 15, 1712–1723.CrossRefGoogle Scholar
  16. Dott, Jr., R.H. and Shaver, R.H., eds., 1974. Modern and ancient geosynclinal sedimentation. Soc. Econ. Paleont. Mineral. Sp. Publ. 19, 1–380.Google Scholar
  17. Dunbar, C.O. and Rodgers, J., 1957. Principles of Stratigraphy. John Wiley and Sons, Inc., New York, 1–356.Google Scholar
  18. Ewart, A., 1963. Petrology and petrogenesis of the Quaternary pumice ash in the Taupo area, New Zealand. J. Petrol. 4, 392–431.Google Scholar
  19. Fisher, R.V., 1966a. Geology of a Miocene ignimbrite layer, John Day Formation, eastern Oregon. Univ. Calif. Publ. Sci. Geol. 67, 1–58.Google Scholar
  20. Fisher, R.V., 1968b. Pyrogenic mineral stability, lower member of the John Day Formation, eastern Oregon. Univ. Calif. Publ. Geol. Sci. 75, 1–39.Google Scholar
  21. Fisher, R.V. and Rensberger, J.M., 1973. Physical stratigraphy of the John Day Formation. Univ. Calif. Publ. Geol. Sci. 101, 1–45.Google Scholar
  22. Francis, E.H., 1967. Review of Carboniferous-Permian volcanicity in Scotland. Geol. Rundsch. 57, 219–246.CrossRefGoogle Scholar
  23. Francis, E.H., 1970. Review of Carboniferous volcanism in England and Wales. J. Earth Sci., Leeds 8, 41–56.Google Scholar
  24. Gwinn, V.E. and Mutch, T.A., 1965. Intertongued Upper Cretaceous volcanic and non-volcanic rocks, central-western Montana. Geol. Soc. Amer. Bull. 76, 1125–1144.CrossRefGoogle Scholar
  25. Hay, R.L., 1963. Stratigraphy and zeolitic diagenesis of the John Day Formation of Oregon. Univ. Calif. Publ. Geol. Sci. 42, 199–262.Google Scholar
  26. Hay, R.L., 1973. Lithofacies and environments of Bed 1, Olduvai Gorge, Tanzania. J. Quat. Res. 3, 541–560.CrossRefGoogle Scholar
  27. Hay, R.L., 1976. Geology of the Olduvai Gorge: A study of sedimentation in a semiarid basin. Univ. Calif. Press, Berkeley, 1–203.Google Scholar
  28. Healy, J., Vucetich, C.G. and Pullar, W.A., 1964. Stratigraphy and chronology of Late Quaternary volcanic ash in Taupo, Rotorua, and Gisborne Districts. N.Z. Geol. Survey Bull. 73, 7–88.Google Scholar
  29. Ingersoll, R.V., 1978. Petrofacies and petrologic evolution of the late Cretaceous fore-arc basin, northern and central California. J. Geol. 86, 335–352.CrossRefGoogle Scholar
  30. Izett, G.A., 1981. Volcanic ash beds: recorders of Upper Cenozoic silicic pyroclastic volcanism in the western United States. J. Geophys. Res. 86, 10200–10222.CrossRefGoogle Scholar
  31. Izett, G.A., Wilcox, R.E. and Borchardt, G.A., 1972. Correlation of a volcanic ash bed in Pleistocene deposits near Mount Blanco, Texas, with the Guaje Pumice Bed of the Jemez Mountains, New Mexico. Quat. Res. 2, 554–578.CrossRefGoogle Scholar
  32. Kuenzi, W.D., Horst, O.H. and McGehee, R.V., 1979. Effect of volcanic activity on fluvial-deltaic sedimentation on a modern arc-trench gap, southwestern Guatemala. Geol. Soc. Amer. Bull. Pt. I 90, 827–838.CrossRefGoogle Scholar
  33. Lajoie, J., 1979. Faciès models 15. Volcaniclastic rocks. Geoscience Can. 6, no. 3, 129–139.Google Scholar
  34. Larsen, E.S., Jr. and Cross, W., 1956. Geology and petrology of the San Juan region, southwestern Colorado. U.S. Geol. Survey Prof. Paper 258, 1–303.Google Scholar
  35. Lichtblau, A.P. and Dimroth, E., 1980. Stratigraphy and facies at the south margin of the Archean Noranda Caldera, Noranda, Quebec. In Current Research, Pt. A, Geol. Survey Can. Paper 80–1 A, 69–79.Google Scholar
  36. Lipman, P.W., 1968. Geology of Summer Coon volcanic center, eastern San Juan Mountains, Colorado. In Epis, R.C., ed., Cenozoic volcanism in the southern Rocky Mountains. Colo. School of Mines Qt. 63, 211–236.Google Scholar
  37. Lipman, P.W., 1975. Evolution of the Platoro Caldera complex and related volcanic rocks, southeastern San Juan Mountains, Colorado. U. S. Geol. Survey Prof. Paper 852, 1–128.Google Scholar
  38. Lipman, P.W. and Steven, T.A., 1970. Reconnaissance geology and economic significance of the Platoro Caldera, south-eastern San Juan Mountains, Colorado. In Geol. Survey Res. 1970. U.S. Geol. Survey Prof. Paper 700-C, C19–C29.Google Scholar
  39. Lipman, P.W., Prostka, H.J. and Christiansen, R.L., 1972. Cenozoic volcanism and plate-tectonic evolution of the Western United States. I. Early and Middle Cenozoic. Phil. Trans. Roy. Soc. London A 271, 217–248.CrossRefGoogle Scholar
  40. Lipman, P.W., Steven, T.A. and Mehnert, H.H., 1970. Volcanic history of the San Juan Mountains, Colorado, as indicated by potassium—argon dating. Geol. Soc. Amer. Bull. 81, 2329–2352.CrossRefGoogle Scholar
  41. Lipman, P.W., Doe, B.R., Hedge, C.E. and Steven, T.A., 1978. Petrologic evolution of the San Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence. Geol. Soc. Amer. Bull, 89, 59–82.CrossRefGoogle Scholar
  42. Lipman, P.W., Steven, T.A., Luedke, R.G. and Burbank, W.S., 1973. Revised volcanic history of the San Juan, Uncompahgre, Silverton, and Lake City calderas in the western San Juan Mountains, Colorado. U.S. Geol. Survey J. Res. 1, 627–642.Google Scholar
  43. Luedke, R.G. and Burbank, W.S., 1963. Tertiary volcanic stratigraphy in the western San Juan Mountains. In Short papers in geology and hydrology. U.S. Geol. Survey Prof. Paper 475-C, C39–C44.Google Scholar
  44. Luedke, R.G. and Burbank, W.S., 1968. Volcanism and cauldron development in the western San Juan Mountains, Colorado. In Epis, R.C., ed., Cenozoic volcanism in southern Rocky Mountains. Colo. School Mines Quart. 63, 175–208.Google Scholar
  45. Matthews, R.K., 1974. Dynamic stratigraphy. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1–370.Google Scholar
  46. Merriam, J.C., 1901. A contribution to the geology of the John Day Basin (Oregon). Univ. Calif. Publ.Geol. Sci. 2, 269–314.Google Scholar
  47. Momose, K., Kobayashi, K., Minagawa, K. and Michida, M., 1968. Identification of tephra by means of ferro-magnetic minerals in pumice. Tokyo Univ Earthq. Res. Inst. Bull. 46, 1275–1292.Google Scholar
  48. Mullineaux, D.R., 1974. Pumice and other pyroclastic deposits in Mount Rainier National Park, Washington. U.S. Geol. Survey Bull. 1326, 1–83.Google Scholar
  49. Naeser, C.W., Briggs, N.D., Obradovich, J.D. and Izett, G.A., 1981. Geochronology of Quaternary tephra deposits. In Self, S. and Sparks, R.S.J., eds., Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 13–47.Google Scholar
  50. Nakamura, K., 1964. Volcano-stratigraphic study of Oshima Volcano Izu. Tokyo Univ. Earthq. Res. Inst. Bull. 42, 649–728.Google Scholar
  51. North American Commission on Stratigraphie Nomenclature, 1983. North American Stratigraphic Code. Amer. Assoc. Petrol. Geol. Bull. 67, 841–875.Google Scholar
  52. Packham, G.H., 1968. The Lower and Middle Palaeozoic stratigraphy and sedimentary tectonics of the Sofala-Hill End-Euchareena region, N.S.W. Proc. Linnean Soc. New South Wales 93, Part 1, 111–163.Google Scholar
  53. Parsons, W.H., 1969. Criteria for the recognition of volcanic breccias: Review. Geol. Soc. Amer. Mem. 115, 263–304.Google Scholar
  54. Peck, D.L., Griggs, A.B., Schlicker, H.G., Wells, F.G. and Dole, H.M., 1964. Geology of the central and northern parts of the western Cascade Range in Oregon. U.S. Geol. Survey Prof. Paper 449, 1–56.Google Scholar
  55. Pettijohn, F.J., 1975. Sedimentary rocks. 3rd Edition, Harper and Row, Publishers, New York, 1–628.Google Scholar
  56. Pettijohn, F.J., Potter, P.E. and Siever, R., 1972. Sand and Sandstone. Springer-Verlag Berlin, Heidelberg, New York, 1–618.Google Scholar
  57. Reading, H.G., ed., 1978. Sedimentary environments and facies. Elsevier, Amsterdam, 1–557.Google Scholar
  58. Reynolds, R.L., 1975. Paleomagnetism of the Yellowstone tuffs and their associated airfall ashes. Univ. Colorado, Boulder, Ph.D. diss., 1–268.Google Scholar
  59. Roedder, E. and Smith, R.L., 1965. Liquid water in pumice vesicles, a crude but useful dating method (Abst.). Geol. Soc. Amer. Sp. Paper 82, Abst. for 1964, 164.Google Scholar
  60. Rubel, D.H., 1971. Independence Volcano: A major Eocene eruptive center, northern Absaraka volcanic province. Geol. Soc. Amer. Bull. 82, 2473–2494.CrossRefGoogle Scholar
  61. Sarna-Wojcicki, A.M., Shipley, S., Waitt, R.B., Jr., Dzurisin, D. and Wood, S.H., 1981. Areal distribution, thickness, mass, volume, and grain size of air-fall ash from six major eruptions of 1980. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 577–600.Google Scholar
  62. Schmincke, H.-U., 1977b. Phreatomagmatische Phasen in quartären Vulkanen der Osteifel. Geol. Jahrb. 39, 3–45.Google Scholar
  63. Schmincke, H.-U. and von Rad, U., 1979. Neogene evolution of Canary Island volcanism inferred from ash layers and volcaniclastic sandstones of DSDP site 397 (Leg 47A). In von Rad, U., Ryan, W.B.F., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 47, pt. I, 703–725.Google Scholar
  64. Schmincke, H.-U., Fisher, R.V. and Waters, A.C., 1973. Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20, 553–574.CrossRefGoogle Scholar
  65. Self, S. and Sparks, R.S.J., eds., 1981. Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 1–481.Google Scholar
  66. Selley, R.C., 1978. Ancient sedimentary environments. 2nd Ed., Cornell Univ. Press, New York, 1–287.Google Scholar
  67. Simkin, T., Siebert, L., McClelland, L., Bridge, D., Newhall, C. and Latter, J.H., 1981. Volcanoes of the world. Smithsonian Institution, Hutchinson Ross Publ. Co., Stroudsberg, Pa., 1–232.Google Scholar
  68. Smedes, H.W. and Prostka, H.J., 1972. Stratigraphic framework of the Absaroka Volcanic Supergroup in the Yellowstone National Park region. U.S. Geol. Survey Prof. Paper 729-C, C1 - C33.Google Scholar
  69. Smith, R.L. and Bailey, R.A., 1968. Resurgent cauldrons. Geol. Soc. Amer. Mem. 116, 613–662.Google Scholar
  70. Stanley, K.O., 1976. Sandstone petrofacies in the Cenozoic High Plains sequence, eastern Wyoming and Nebraska. Geol. Soc. Amer. Bull. 87, 297–309.CrossRefGoogle Scholar
  71. Stearns, H.T., 1925. The explosive phase of Kilauea Volcano, Hawaii in 1924. Bull. Volcanol. 5, 1–16.Google Scholar
  72. Steen, V.C. and Fryxell, R., 1965. Mazama and Glacier Peak pumice: Uniformity of refractive index after weathering. Science 150, 878–880.CrossRefGoogle Scholar
  73. Steen-Mclntyre, V.C., 1977. A manual for tephrochronology. Idaho Springs, Colorado, 1–167.Google Scholar
  74. Steven, T.A., 1975. Middle Tertiary volcanic field in the southern Rocky Mountains. In Curtis, B.F., ed., Cenozoic history of the southern Rocky Mountains. Geol. Soc. Amer. Mem. 144, 75–94.Google Scholar
  75. Steven, T.A. and Lipman, P.W., 1968. Central San Juan cauldron complex, Colorado. In Epis, R.C., ed., Cenozoic volcanism in the southern Rocky Mountains. Colo. School Mines Qt. 63, 241–258.Google Scholar
  76. Steven, T.A. and Lipman, P.W., 1976. Calderas of the San Juan volcanic field, southwestern Colorado. U.S. Geol. Survey Prof. Paper 958, 1–35.Google Scholar
  77. Steven, T.A. and Ratté, J.C., 1964. Revised Tertiary volcanic sequence in the central San Juan Mountains, Colorado. In Short papers in geology and hydrology. U.S. Geol. Survey Prof. Paper 475-D, D54–D63.Google Scholar
  78. Steven, T.A. and Ratté, J.C., 1965. Geology and structural control of ore deposition in the Creede district, San Juan Mountains, Colorado. U.S. Geol. Survey Prof. Paper 487, 1–90.Google Scholar
  79. Steven, T.A., Mehnert, H.H. and Obradovich, J.D., 1967. Age of volcanic activity in the San Juan Mountains, Colorado. In Geological Survey Research 1967. U.S. Geol. Survey Prof. Paper 575-D, D47–D55. 13Google Scholar
  80. Steven, T.A., Cunningham, C.G., Naeser, C.W. and Mehnert, H.H., 1979. Revised stratigraphy and radiometric ages of volcanic rocks and mineral deposits in the Marysvale area, West Central Utah. U. S. Geol. Survey Bull. 1469, 1–40.Google Scholar
  81. Steven, T.A., Lipman, P.W., Hail, W.J., Jr., Barker, F. and Luedke, R.G., 1974. Geologic map of the Durango quadrangle, southwestern Colorado. U. S. Geol. Survey Misc. Geol. Inv. Map 1–764.Google Scholar
  82. Tassé, N., Lajoie, J. and Dimroth, E., 1978. The anatomy and nterpretation of an Archean volcaniclastic sequence, Noranda region, Quebec. Can. J. Earth Sci. 15, 874–888.CrossRefGoogle Scholar
  83. Thorarinsson, S., 1944. Tefrokronologiska studier pa Island. Geogr. Analer 1–203 (English summary, p. 204 – 215 ).Google Scholar
  84. Thorarinsson, S., 1974. The terms tephra and tephrochronology. In Westgate, J.A. and Gold, C.M., eds., World bibliography and index of Quaternary tephrochronology. Printing Services Dept., Univ. of Alberta (Canada), 1–528.Google Scholar
  85. Thorarinsson, S., 1981. Tephra studies and tephrochronology: A historical review with special reference to Iceland. In Self, S. and Sparks, R.S.J., eds., Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 1–12.Google Scholar
  86. Turner, D.L., 1970. Potassium-argon dating of Pacific coast Miocene foraminiferal stages. Geol. Soc. Amer. Sp. Paper 124, 91–129.Google Scholar
  87. Vessel, R.K. and Davies, D.K., 1981. Nonmarine sedimentation in an active fore arc basin. Soc. Econ. Paleont. Mineral. Publ. 31, 31–45.Google Scholar
  88. Vitaliano, D.B., ed., 1982. World bibliography and index of Quaternary tephrochronology. Supplement No. 1. Geobooks. Regency House, Norwich, England, 1–194.Google Scholar
  89. Waitt, R.B., Jr. and Dzurisin, D., 1981. Proximal air-fall deposits from the May 18 eruption — stratigraphy and field sedimentology. In Lipman, P.W. and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper 1250, 601–616.Google Scholar
  90. Walker, R.G., ed., 1979. Facies models. Geoscience Can., Reprint Series 1, 1–211.Google Scholar
  91. Westgate, J.A. and Gold, C.M., 1974. World bibliography and index of Quaternary tephrochronology. Printing Services Dept., Univ. of Alberta (Canada), 1–528.Google Scholar
  92. Westgate, J.A. and Gorton, M.P., 1981. Correlation techniques in tephra studies. In Self, S. and Sparks, R.S.J., eds., Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 73–94.Google Scholar
  93. Wheeler, H.E. and Mallory, V.S., 1953. Designation of stratigraphic units. Amer. Assoc. Petrol. Geol. Bull. 37, 2407–2421.Google Scholar
  94. Wilcox, R.E., 1965. Volcanic ash chronology. In Wright, H.E., Jr. and Frey, D.G., eds., Quaternary of the United States. Princeton Univ. Press, Princeton, N.J., 807–816.Google Scholar
  95. Winter, J., 1981. Exakte tephro-stratigraphische Korrelation mit morphologisch differenzierten Zir- konpopulationen ( Grenzbereich Unter/Mitteldevon, Eifel-Ardennen). N. Jb. Geol. Pal. Abh. 162, 1–56.Google Scholar
  96. Wolf, K.H. and Ellison, B., 1971. Sedimentary geology of the zeolitic volcanic lacustrine Pliocene Rome beds, Oregon, 1. Sed. Geol. 6, 271–302.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Richard V. Fisher
    • 1
  • Hans-Ulrich Schmincke
    • 2
  1. 1.Department of Geological SciencesUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Institut für MineralogieRuhr-Universität BochumBochumGermany

Personalised recommendations