Skip to main content

Alteration of Volcanic Glass

  • Chapter
Pyroclastic Rocks

Abstract

There are few rock types that offer better opportunities for alteration studies (weathering, diagenesis, hydrothermal) than glassy volcanic and volcaniclastic rocks. The main reason is that volcanic glass is thermodynamically unstable and decomposes more readily than nearly all associated mineral phases. Volcanic glass is a super-cooled silicate liquid with a poorly ordered internal structure consisting of loosely linked SiO4 tetrahedra with considerable intermolecular space. Hydration and concomitant breakdown of glass results in fluxes of some elements out of the glass into interstitial pore waters. Precipitation of secondary (authigenic) minerals from such solutions, replacement of glass shards by new minerals and filling of pore space created by dissolution of glassy particles during alteration are some of the most rapid low temperature lithification processes known. Moreover, changes in composition of pore solutions and elevation in temperatures during hydration and burial result in variable mineral compositions and rapidly changing mineral assemblages because of the restricted P/T stabilities of some of the alteration products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ailin-Pyzik, I.B. and Sommer, S.E., 1981. Microscale chemical effects of low temperature alteration of DSDP basaltic glasses. J. Geophys. Res. 86, 9503–9510.

    Google Scholar 

  • Andrews, A.J., 1977. Low temperature fluid alteration of oceanic Layer 2 basalts, DSDP Leg 37. Can. J. Earth Sci. 14, 911–926.

    Google Scholar 

  • Antweiler, R.C. and Drever, J.I., 1983. The weathering of a late Tertiary volcanic ash: importance of organic solutes. Geochim. Cosmochim. Acta 47, 623–629.

    Google Scholar 

  • Arrhenius, G., 1963. Pelagic sediments. In Hill, M.N., ed., The Sea 3. Wiley-Interscience, New York, 655–727.

    Google Scholar 

  • Baragar, W.R.A., Plant, A.G., Pringle, C.J. and Schau, M., 1977. Petrology and alteration of selected units of Mid-Atlantic Ridge basalts sampled from sites 332 and 335, DSDP Leg 37. Can. J. Earth Sci. 14, 837–874.

    Google Scholar 

  • Bell, C.K., 1971. Boundary geology, upper Nelson River area, Manitoba and northeastern Ontario. In Turnock, A.C., ed., Geoscience Studies in Manitoba, Geol. Assoc. Can. Sp. Paper 9, 11–39.

    Google Scholar 

  • Bischof, G., 1847-55. Lehrbuch der chemischen und physikalischen Geologie. Bonn. 1st ed. 2 vol., 1–3615.

    Google Scholar 

  • Blatt, H., Middleton, G. and Murray, R., 1972. Origin of sedimentary rocks. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1–634.

    Google Scholar 

  • Bloch, S. and Bischoff, J.L., 1979. The effect of low-temperature alteration of basalt on the oceanic budget of potassium. Geology 7, 193–196.

    Google Scholar 

  • Bohor, B.F., Phillips, R.E. and Pollastro, R.M., 1979. Altered volcanic ash partings in Wasatch Formation coal beds of the northern Powder River basin: Composition and geologic applications. U.S. Geol. Survey, Open File Rpt. 79–1203, 1–11.

    Google Scholar 

  • Boles, J.R., 1974. Structure, stratigraphy and petrology of mainly Triassic rocks, Hokonui Hills, Southland, New Zealand. N. Z. J. Geol. Geophys. 17, 337–374.

    Google Scholar 

  • Boles, J.R. and Coombs, D.S., 1975. Mineral reactions in zeolitic Triassic tuff, Hokonui Hills, New Zealand. Geol. Soc. Amer. Bull. 86, 163–173.

    Google Scholar 

  • Boles, J.R. and Coombs, D.S., 1977. Zeolite facies alteration of sandstones in the Southland Syncline, New Zealand. Amer. J. Sci. 277, 982–1012.

    Google Scholar 

  • Boles, J.R. and Surdam, R.C., 1979. Diagenesis of volcanogenic sediments in a Tertiary saline lake: Wagon Bed Formation, Wyoming. Amer. J. Sci. 279, 832–853.

    Google Scholar 

  • Boles, J.R. and Wise, W.S., 1978. Nature and origin of deep-sea clinoptilolite. In Sand, L.B. and Mumpton, F.A., eds., Natural Zeolites: occurrence, properties, use. Pergamon Press, Oxford, 235–243.

    Google Scholar 

  • Bonatti, E., 1963. Zeolites in Pacific pelagic sediments. Trans. N. Y. Acad. Sci. Ser. 11, 25, 938–948.

    Google Scholar 

  • Bonatti, E., 1965. Palagonite, hyaloclastites and alteration of volcanic glass in the ocean. Bull. Volcanol. 28, 257–269.

    Google Scholar 

  • Bonatti, E., 1967. Mechanism of deep sea volcanism in the south Pacific. In Abelson, P., ed., Researches in Geochemistry, J. Wiley, New York, 2, 453–491.

    Google Scholar 

  • Bramlette, M.N. and Posnjak, E., 1933. Zeolite alteration of pyroclasts. Amer. Mineral. 18, 167–171.

    Google Scholar 

  • Brey, G. and Schmincke, H.-U., 1980. Origin and diagenesis of the Roque Nublo Breccia, Gran Canaria (Canary Islands)-Petrology of Roque Nublo volcanics, II. Bull. Volcanol. 43–1, 15–33.

    Google Scholar 

  • Bunsen, R., 1847. Beitrag zur Kenntnis des isländischen Tuffgebirges. Annal. Chem. Pharm. 61, 3, 265–279.

    Google Scholar 

  • Bunsen, R., 1851. Über die Prozesse der vulkanischen Gesteinsbildungen Islands. Annal. Phys. Chem. 83, 197–272.

    Google Scholar 

  • Burger, K., 1980. Kaolin-Kohlentonsteine im flözführenden Oberkarbon des Niederrheinisch-Westfälischen Steinkohlenreviers. Geol. Rundsch. 69, 488–531.

    Google Scholar 

  • Byerly, G.R. and Sinton, J.M., 1979. Compositional trends in natural basaltic glasses from DSDP holes 417D and 418A. In Donnelly, T., Francheteau, J., Bryan, W., Robinson, P., Flower, M., Salisbury, M. et al., eds., Init. Rpts. Deep Sea Drilling Proj. 51, 52,53, Pt. 2, 957–971.

    Google Scholar 

  • Campbell, A.S. and Fyfe, W.S., 1965. Analcime-albite equilibria. Amer. J. Sci. 263, 807–816.

    Google Scholar 

  • Coombs, D.S., 1954. The nature and alteration of some Triassic sediments from Southland, New Zealand. Roy. Soc. New Zealand Trans. 82, 65–109.

    Google Scholar 

  • Coombs, D.S., Ellis, A.J., Fyfe, W.S. and Taylor, A.M., 1959. The zeolite facies, with comments on the interpretation of hydrothermal synthesis. Geochim. Cosmochim. Acta 17, 53–107.

    Google Scholar 

  • Correns, C.W., 1930. Über einen Basalt vom Boden des atlantischen Ozeans und seine Zersetzungsrinde. Chemie der Erde 5, 76–86.

    Google Scholar 

  • Deer, W.H., Howie, R.A. and Zussman, J., 1963. Rock-forming minerals. Vol. 4, Framework Silicates. John Wiley and Sons, Inc., New York, 1–435.

    Google Scholar 

  • Deffeyes, K.S., 1959. Zeolites in sedimentary rocks. J. Sed. Petrol. 29, 602–609.

    Google Scholar 

  • Dickinson, W.R., 1962. Marine sedimentation of clastic volcanic strata (Abst.). Amer. Assoc. Petrol. Geol. Bull. 46, 263.

    Google Scholar 

  • Dimroth, E. and Lichtblau, A.P., 1979. Metamorphic evolution of Archean hyaloclastites, Noranda area, Quebec, Canada. Part I: Comparison of Archean and Cenozoic sea-floor metamorphism. Can. J. Earth Sci. 16, 1315–1340.

    Google Scholar 

  • Doremus, R.H.J., 1975. Interdiffusion of hydrogen and alkali ions in a glass surface. J. Noncrystal Solids 19, 137–144.

    Google Scholar 

  • Drever, J.I., 1972. Relations among pH, carbon dioxide pressure, alkalinity, and calcium concentration in waters saturated with respect to calcite at 25 °C and one atmosphere total pressure. Contrib. Geol. 11, 41–42.

    Google Scholar 

  • Eggleton, R.A. and Keller, J., 1982. The palagonitization of limburgite glass - a TEM study. N. Jb. Miner. Mh. 1982, 289–311.

    Google Scholar 

  • Eugster, H.P. and Surdam, R.C., 1973. Depositional environment of the Green River Formation of Wyoming: a preliminary report. Geol. Soc. Amer. Bull. 84, 1115–1120.

    Google Scholar 

  • Friedman, I. and Long, W., 1976. Hydration rate of obsidian. Science 191, 347–352.

    Google Scholar 

  • Friedman, I. and Smith, R.L., 1958. The deuterium content of water in some volcanic glasses. Geochim. Cosmochim. Acta 15, 218–228.

    Google Scholar 

  • Friedman, I. and Smith, R.L., 1960. A new dating method using obsidian: Part I, the development of the method. Amer. Antiquity 25, 476–522.

    Google Scholar 

  • Friedman, I. and Trembour, F.W., 1978. Obsidian: The dating stone. Amer. Scientist 66, 44–51.

    Google Scholar 

  • Friedman, I., Smith, R.L. and Long, W.D., 1966. Hydration of natural glass and formation of perlite. Geol. Soc. Amer. Bull. 77, 323–327.

    Google Scholar 

  • Fuller, R.E., 1932. Concerning basalt glass. Amer. Mineral. 17, 104–107.

    Google Scholar 

  • Furnes, H., 1974. Volume relations between palagonite and authigenic minerals in hyaloclastites and its bearing on the rate of palagonitization. Bull. Volcanol. 38, 173–186.

    Google Scholar 

  • Furnes, H., 1975. Experimental palagonitization of basaltic glasses of varied composition. Contr. Mineral. Petrol. 50, 105–113.

    Google Scholar 

  • Furnes, H., 1978. Element mobility during palagonitization of a subglacial hyaloclastite in Iceland. Chem. Geol. 22, 249–264.

    Google Scholar 

  • Furnes, H., 1980. Chemical changes during palagonitization of an alkali olivine basaltic hyaloclastite, Santa Maria, Azores. N.Jb. Min. Abh. 138, 14–30.

    Google Scholar 

  • Furnes, H. and El-Anbaawy, I.H., 1980. Chemical changes and authigenic mineral formation during palagonitization of a basanite hyaloclastite, Gran Canaria, Canary Islands. N. Jb. Min. Abh. 139, 279–302.

    Google Scholar 

  • Gary, M., McAfee, R., Jr. and Wolf, C.L., eds., 1974. Glossary of geology. Amer. Geol. Inst., Washington, D.C, 1–805.

    Google Scholar 

  • Gieskes, J.M. and Lawrence, J.R., 1981. Alteration of volcanic matter in deep sea sediments: evidence from chemical composition of interstitial waters from deep sea drilling cores. Geochim. Cosmochim. Acta 45, 1687–1704.

    Google Scholar 

  • Goodell, P.C. and Waters, A.C., eds., 1981. Uranium in volcanic and volcaniclastic rocks. Amer. Assoc. Petrol. Geol., Studies in Geology 13, 1–331.

    Google Scholar 

  • Grim, R.E. and Giiven, N., 1978. Bentonites: Geology, Mineralogy, Properties and Use. Develop, in Sedim. 24, Elsevier, Amsterdam, 1–256.

    Google Scholar 

  • Hawkins, D.B. and Rustum, R., 1963. Experimental hydrothermal studies on rock alteration and clay mineral formation. Geochim. Cosmochim. Acta 27, 1047–1054.

    Google Scholar 

  • Hay, R.L., 1959b. Origin and weathering of late Pleistocene ash deposits on St. Vincent, B.W.I. J. Geol. 67, 65–87.

    Google Scholar 

  • Hay, R.L., 1963. Stratigraphy and zeolitic diagenesis of the John Day Formation of Oregon. Univ. Calif. Publ. Geol. Sci. 42, 199–262.

    Google Scholar 

  • Hay, R.L., 1966. Zeolites and zeolitic reactions in sedimentary rocks. Geol. Soc. Amer. Sp. Paper 85, 1–130.

    Google Scholar 

  • Hay, R.L. and Iijima, A., 1968a. Nature and origin of palagonite tuffs of the Honolulu Group on Oahu, Hawaii. Geol. Soc. Amer. Mem. 116, 331–376.

    Google Scholar 

  • Hay, R.L. and Iijima, A., 1968b. Petrology of palagonite tuffs of Koko Crater, Oahu, Hawaii. Contr. Mineral. Petrol. 17, 141–154.

    Google Scholar 

  • Hay, R.L. and Jones, B.F., 1972. Weathering of basaltic tephra on the Island of Hawaii. Geol. Soc. Amer. Bull. 83, 317–332.

    Google Scholar 

  • Heiken, G.H., 1972. Morphology and petrography of volcanic ashes. Geol. Soc. Amer. Bull. 183, 1961–1988.

    Google Scholar 

  • Hein J.R. and Scholl, D.W., 1978. Diagenesis and distribution of Late Cenozoic volcanic sediment in the southern Bering Sea. Geol. Soc. Amer. Bull. 89, 197–210.

    Google Scholar 

  • Hekinian, R. and Hoffert, M., 1975. Rate of palagonitization and manganese coating on basaltic rocks from the Rift Valley in the Atlantic Ocean near 36°50′ N. Mar. Geol. 19, 91–109.

    Google Scholar 

  • Hewett, D.F., 1917. The origin of bentonite and the geologic range of related materials in Big Horn basin. Wyoming. Washington Acad. Sci. Proc. 7, 196–198.

    Google Scholar 

  • Honnorez, J., 1972. La Palagonitisation: l’altération sous-marine du verre volcanique basique de Palagonia (Sicile). Vulkaninstitut I. Friedländer No. 9, Birkhäuser Verlag, Basel, Stuttgart, 1–132.

    Google Scholar 

  • Honnorez, J., 1978. Generation of phillipsites by palagonitization of basaltic glass in sea water and the origin of K-rich deep sea sediments. In Sand, L.B. and Mumpton, F.A., eds., Natural zeolites: occurrence, properties and use. Pergamon Press, New York, 245–258.

    Google Scholar 

  • Hoppe, H.-G., 1940. Untersuchungen an Palagonittuffen und über ihre Bildungsbedingungen. Chemie der Erde 13, 484–514.

    Google Scholar 

  • Iijima, A., 1978. Geological occurrences of zeolites in marine environments: In Sand, L.B. and Mumpton, F.A., eds., Natural Zeolites: occurrence, properties, use. Pergamon Press, Oxford, 175–198.

    Google Scholar 

  • Iijima, A. and Harada, K., 1969. Authigenic zeolites in palagonite tuffs on Oahu, Hawaii. Amer. Mineral. 54, 182–197.

    Google Scholar 

  • Iijima, A. and Utada, M., 1972. A critical review of the occurrence of zeolites in sedimentary rocks in Japan. Jap. J. Geol. Geogr. 42, 61–84.

    Google Scholar 

  • Jakobsson, S.P., 1972. On the consolidation and palagonitization of the tephra of the Surtsey volcanic island, Iceland. Surtsey Res. Progr. Paper 6, 121–128.

    Google Scholar 

  • Jakobsson, S.P., 1978. Environmental factors controlling the palagonitization of the Surtsey tephra, Iceland. Bull. Geol. Soc. Denmark Sp. Issue 27, 91–105.

    Google Scholar 

  • Jeans, C.V., Merriman, R.J., Mitchell, J.G. and Bland, D.J., 1982. Volcanic clays in the Cretaceous of southern England and northern Ireland, Clay Minerals 17, 1205–156.

    Google Scholar 

  • Jezek, P.A. and Noble, D.C., 1978. Natural hydration and ion exchange of obsidian: an electron microprobe study. Amer. Mineral. 63, 266–273.

    Google Scholar 

  • Jones, E.J.W., 1973. Volcanic glass in abyssal clays at DSDP Leg 20 drilling sites, northwest Pacific. In Heezen, B.C. and MacGregor, I.O., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 20, 389–416.

    Google Scholar 

  • Jonsson, G., 1961. Some observations on the occurrence of sideromelane and palagonite. Bull. Geol. Inst. Univ. Uppsala 40, 81–86.

    Google Scholar 

  • Juteau, T., Noack, Y., Whitechurch, H. and Courtois, C., 1979. Mineralogy and geochemistry of alteration products in Holes 417A and 417D basement samples. In Donnelly, T., Francheteau, J., Bryan, W., Robinson, P., Flower, M., Salisbury, M., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 51,52,53, Pt. 2, 1273–1297.

    Google Scholar 

  • Kastner, M., 1976. Diagenesis of basal sediments and basalts of sites 322 and 323, Leg 35, Bellinghausen Abyssal Plain. In Hollister, C. and Cradock, C., eds., Init. Rpts. Deep Sea Drilling Proj. 35, 513–528.

    Google Scholar 

  • Kastner, M., 1979. Zeolites. In Marine Minerals. Min. Soc. Amer. Short Course, 111–122.

    Google Scholar 

  • Kastner, M. and Gieskes, J., 1976. Interstitial water profiles and sites of diagenetic reactions. Leg 35, DSDP, Bellingshausen Abyssal Plain. Earth Planet. Sci. Lett. 33, 11–20.

    Google Scholar 

  • Kastner, M. and Siever, R., 1979. Low temperature feldspars in sedimentary rocks. Amer. J. Sci. 279, 435–479.

    Google Scholar 

  • Kastner, M. and Stonecipher, S.A., 1978. Zeolites in pelagic sediments of the Atlantic, Pacific and In¬dian Oceans: In Sand, L.B. and Mumpton, F.A., eds., Natural zeolites: occurrence, properties, use. Pergamon Press, Oxford, 199–220.

    Google Scholar 

  • Khitarov, N.J., Khundaze, A.G., Senderov, E.E. and Shibayeva, N.P., 1970. The effects of volcanic rocks on the compositions of hydrothermal solutions. Geochem. Int. 6, 469–482.

    Google Scholar 

  • Kirkman, J.H., 1976. Clay mineralogy of thirteen paleosols developed in Holocene and late Pleistocene tephras of central North Island, New Zealand. N.Z. J. Geol. Geophys. 19, 179–187.

    Google Scholar 

  • Kirkman, J.H., 1980. Mineralogy of the Kauroa Ash Formation of south-west and west Waikato, North Island, New Zealand, N.Z. J. Geol. Geophys. 23, 113–120.

    Google Scholar 

  • Knight, W.C., 1898. Mineral soap. Eng. Mining J., 66, 481.

    Google Scholar 

  • Kuniyoshi, S. and Liou, J.G., 1976. Burial metamorphism of the Karmutsen volcanic rocks, northeastern Vancouver Island, British Columbia. Amer. J. Sci. 276, 1096–1119.

    Google Scholar 

  • Laursen, T. and Lanford, A., 1978. Hydration of obsidian. Nature 276,153–156.

    Google Scholar 

  • Levi, B., 1970. Burial metamorphic episodes in the Andean geosyncline, Central Chile. Geol. Rundsch. 59, 994–1013.

    Google Scholar 

  • Lipman, P.W., 1965. Chemical comparison of glassy and crystalline volcanic rocks. U.S. Geol. Survey Bull. 1201-D, D1 - D24.

    Google Scholar 

  • Mariner, R.H., 1971. Experimental evaluation of authigenic mineral reactions in the Pliocene Moonstone formation. Univ. Wyoming Ph.D. diss., 1–133.

    Google Scholar 

  • Mariner, R.H. and Surdam, R.C., 1970. Alkalinity and formation of zeolites in saline alkaline lakes. Science 170, 977–980.

    Google Scholar 

  • Mathews, D.H., 1962. Altered lavas from the floor of the eastern north Atlantic. Nature 194, 368–369.

    Google Scholar 

  • Melson, W.G. and Thompson, G., 1973. Glassy abyssal basalts, Atlantic sea-floor near St. Paul’s Rocks: Petrography and composition of secondary clay minerals. Geol. Soc. Amer. Bull. 84, 703–716.

    Google Scholar 

  • Moore, J.G., 1966. Rate of palagonitization of submarine basalt adjacent to Hawaii. U.S. Geol. Survey Prof. Paper 550D, 163–171.

    Google Scholar 

  • Morgenstein, M. and Riley, T.J., 1975. Hydration-rind dating of basaltic glass: A new method for archeological chronologies. Asian Perspectives 17, 145–159.

    Google Scholar 

  • Muffler, L.J.P., Short, J.M., Keith, T.E.C. and Smith, V.C., 1969. Chemistry of fresh and altered basaltic glass from the Upper Triassic Hound Island Volcanics, southeastern Alaska. Amer. J. Sci. 267, 196–209.

    Google Scholar 

  • Mumpton, F.A., 1978. Natural zeolites: a new industrial mineral commodity. In Sand, L.B. and Mumpton, F.A., eds., Natural zeolites: occurrence, properties, use. Pergamon Press, Oxford, 3–27.

    Google Scholar 

  • Murray, J. and Renard, A.F., 1891. Deep sea deposits: Scientific Reports of the Voyage of H.M.S. Challenger, 1–525.

    Google Scholar 

  • Nagasawa, K., 1978. Weathering of volcanic ash and other pyroclastic materials. In Sudo, T. et al., eds., Clays and Clay Minerals of Japan. Developments in Sedimentology. Elsevier, Amsterdam, 105–125.

    Google Scholar 

  • Nayudu, Y.R., 1962. A new hypothesis of origin of guyots and seamount terraces. In The crust of the Pacific basin. Amer. Geophys. Un. Monog. 6, 171–180.

    Google Scholar 

  • Nayudu, Y.R., 1964a. Palagonite tuffs (hyaloclastites) and the products of post eruptive processes. Bull. Volcanol. 27, 391–410.

    Google Scholar 

  • Noack, Y., 1981. La palagonite. Bull. Mineral. 104, 36–46.

    Google Scholar 

  • Noack, Y. and Crovisier, J.-L., 1980. Evolution de la densité et de la réfractivité spécifique lors de l’altération sousmarine des verres basaltiques. Bull. Mineral. 103, 523–527.

    Google Scholar 

  • Noble, D.C., 1967. Sodium, potassium and ferrous iron contents of some secondarily hydrated natural silicic glasses. Amer. Mineral. 52, 280–285.

    Google Scholar 

  • Noble, D.C., 1968. Stress-corrosion failure and the hydration of glassy silicic rocks. Amer. Mineral. 53, 1756–1759.

    Google Scholar 

  • Noe-Nygaard, A., 1940. Sub-glacial volcanic activity in ancient and recent times. Fol. Geogr. Dan. 1, no. 2, 5–67

    Google Scholar 

  • Peacock, M.A., 1926. The petrology of Iceland. Part I. The basic tuffs. Trans. Roy. Soc. Edinb. 55, 51–76.

    Google Scholar 

  • Peacock, M.A. and Fuller, R.R., 1928. Chlorophaeite, sideromelane and palagonite from the Columbia River Plateau. Amer. Mineral. 13, 360–383.

    Google Scholar 

  • Penck, A., 1879. Über Palagonit- und Basalttuffe. Z. deutsch. Geol. Ges. 31, 504–577.

    Google Scholar 

  • Piper, D.Z., 1974. Rare earth elements in the sedimentary cycle: a summary. Chem. Geol. 14, 285–304.

    Google Scholar 

  • Price, N.R. and Duff, P.M.D., 1969. Mineralogy and chemistry of tonsteins from Carboniferous sequences in Great Britain. Sedimentology 13, 45–69.

    Google Scholar 

  • Roen, J.B. and Hosterman, J.W., 1982. Misuse of the term “bentonite” for ash beds of Devonian age in the Appalachian basin. Geol. Soc. America Bull. 93, 921–925.

    Google Scholar 

  • Rosholt, J.N., Ptijana, and Noble, D.C., 1971. Mobility of uranium and thorium in glassy and crystallized silicic volcanic rocks. Econ. Geol. 66, 1061–1069.

    Google Scholar 

  • Ross, C.S., 1955. Provenance of pyroclastic materials. Geol. Soc. Amer. Bull. 66, 427–434.

    Google Scholar 

  • Ross, C.S. and Smith, R.L., 1955. Water and other volatiles in volcanic glass. Amer. Mineral. 40, 1071–1089.

    Google Scholar 

  • Schmincke, H.-U. and Pritchard, G., 1981. Carboniferous volcanic glass in submarine hyaloclastites from the Lahn-Dill area, Germany. Naturwissenschaften 68, 615–616.

    Google Scholar 

  • Schmincke, H.-U., Robinson, P.T., Ohnmacht, W. and Flower, M.F.J., 1978. Basaltic hyaloclastites from Hole 396B, DSDP Leg 46. In Dmitriev, L., Heirtzler, J., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 46, 341–355.

    Google Scholar 

  • Schmincke, H.-U., Viereck, L.G., Griffin B.J. and Pritchard, R.G., 1982. Volcaniclastic rocks of the Reydarfjordur drill hole, Eastern Iceland I. Primary features. J. Geophys. Res. 87, 6437–6458.

    Google Scholar 

  • Seyfried, W.E. and Bischoff, J.L., 1979. Basalt-sea water interaction: trace element and strontium isotopic variations in experimentally altered glassy basalt. Earth Planet. Sci. Lett. 44, 463–472.

    Google Scholar 

  • Sheppard, R.A., 1969. Diagenesis of tuffs in the Barstow formation, Mud Hills, San Bernardino County, California. U.S. Geol. Survey Prof. Paper 634, 1–33.

    Google Scholar 

  • Sheppard, R.A., 1971. Zeolites in sedimentary deposits of the United States — a review. In Gould, R.F., ed., Molecular Sieve Zeolites I. Adv. Chem. Ser. 101, Amer. Chem. Soc. Washington, 279–310.

    Google Scholar 

  • Sheppard, R.A., 1973. Zeolites in sedimentary rocks. U.S. Geol. Survey Prof. Paper 820, 689–695.

    Google Scholar 

  • Sheppard, R.A. and Gude, A.J., 3rd, 1968. Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, Calif. U.S. Geol. Survey Prof. Paper 597, 1–38.

    Google Scholar 

  • Sheppard, R.A. and Gude, A.J., 3rd, 1973. Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona. U.S. Geol. Survey Prof. Paper 830, 1–36.

    Google Scholar 

  • Slaughter, M. and Earley, J.W., 1965. Mineralogy and geological significance of the Mowry Bentonites, Wyoming. Geol. Soc. Amer. Sp. Paper 83, 1–116.

    Google Scholar 

  • Smith, D.G.W., 1967. The petrology and mineralogy of some lower Devonian bentonites from Gaspé, Quebec. Can. Mineral. 9, 141–165.

    Google Scholar 

  • Spears, D.A. and Rice, C.M., 1973. An upper Carboniferous limestone of volcanic origin. Sedimentology 20, 281–294.

    Google Scholar 

  • Spears, D.A. and Kanaris-Sotiriou, 1979. A geochemical and mineralogical investigation of some British and other European tonsteins. Sedimentology 26, 407–425.

    Google Scholar 

  • Spooner, E.T.C., 1976. The strontium isotopic composition of seawater, and seawater-oceanic crust interaction. Earth Planet. Sci. Lett. 31, 167–174.

    Google Scholar 

  • Staudigel, H. and Hart, S.R., 1983. Alteration of basaltic glass. Mechanisms and significance for the oceanic crust-seawater budget. Geochim. Cosmochim. Acta 47, 337–350.

    Google Scholar 

  • Steen-Mclntyre, V.C., 1975. Hydration and superhydration of tephra glass - a potential tool for estimating age of Holocene and Pleistocene ash beds. In Suggate, R.P. and Cresswell, M.M., eds., Quaternary studies, Wellington, Roy. Soc. N.Z., 271–278.

    Google Scholar 

  • Stokes, K.R., 1971. Further investigations into the nature of the materials chlorophaeite and palagonite. Min. Mag. 38, 205–214.

    Google Scholar 

  • Stonecipher, S.A., 1978. Chemistry of deep-sea phillipsite, clinoptilolite and host sediments. In Sand, L.B. and Mumpton, F.A., eds., Natural Zeolites: occurrence, properties, use. Pergamon Press, Oxford, 221–234.

    Google Scholar 

  • Stumm, W. and Morgan, J.J., 1981. Aquatic chemistry. John Wiley and Sons, New York, 1–780.

    Google Scholar 

  • Surdam, R.C., 1972. Economic potential of zeolite-rich sedimentary rocks in Wyoming. Wyo. Geol. Assoc. Sci. Bull. 1972, 5–8.

    Google Scholar 

  • Surdam, R.C., 1973. Low-grade metamorphism of tuffaceous rocks in the Karmutsen Group, Vancouver Island, British Columbia. Geol. Soc. Amer. Bull. 84, 1911–1922.

    Google Scholar 

  • Surdam, R.C. and Eugster, H.P., 1976. Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geol. Soc. Amer. Bull. 87, 1739–1752.

    Google Scholar 

  • Surdam, R.C. and Sheppard, R.A., 1978. Zeolites in saline, alkaline lake deposits. In Sand, L.B. and Mumpton, F.A., eds., Natural Zeolites: occurrence, properties, use. Pergamon Press, Oxford, 145–174.

    Google Scholar 

  • Thompson, A.B., 1971. Analcite-albite equilibria at low temperatures. Amer. J. Sci. 271, 79–92.

    Google Scholar 

  • Truesdell, A.H., 1966. Ion-exchange constants of natural glasses by the electrode method. Amer. Mineral. 51, 110–122.

    Google Scholar 

  • Tsong, T.S.T., Houser, C.A., Yusef, N.A., Messier, R.F., White, W.B. and Michels, J.W., 1978. Obsidian hydration profiles measured by sputter-induced optical emission. Science 201, 334–339.

    Google Scholar 

  • Utada, M., 1970. Occurrence and distribution of authigenic zeolites in the Neogene pyroclastic rocks in Japan. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 20, 191–262.

    Google Scholar 

  • Utada, M., 1971. Zeolitic zoning of the Neogene pyroclastic rocks in Japan. Sci. Papers Gen. Educ. Univ. Tokyo 21, 189–221.

    Google Scholar 

  • Viereck, L.G., Griffin, B.J., Schmincke, H.-U. and Pritchard, R.G., 1982. Volcaniclastic rocks of the Reydarfjordur Drill Hole, eastern Iceland. 2. Alteration. J. Geophys. Res. 87, 6459–6476.

    Google Scholar 

  • Von Waltershausen, W.S., 1845. Über die submarinen Ausbrüche in der tertiären Formation des Val di Noto im Vergleich mit verwandten Erscheinungen am Ätna. Gött. Stud. 1, 371–431.

    Google Scholar 

  • Weaver, C.E., 1953. Mineralogy and petrology of some Ordovician K-bentonites and related limestones. Geol. Soc. Amer. Bull. 64, 921–943.

    Google Scholar 

  • Weaver, C.F., 1963. Interpretative value of heavy minerals from bentonites. J. Sed. Petrol. 33, 343–349.

    Google Scholar 

  • Wentworth, C.K., 1938. Ash formations of the island of Hawaii. 3rd Sp. Rpt., Hawaiian Volcano Observatory, Honolulu, Hawaii, 1–183.

    Google Scholar 

  • Williamson, I.A., 1970. Tonsteins — their nature, origins and use. Part I and II. Mining Mag. 122.1, 119–125,II, 203–211.

    Google Scholar 

  • Winkler, H.G.F., 1979. Petrogenesis of metamorphic rocks. 5th ed. Springer-Verlag, Berlin, Heidelberg, New York, 1–348.

    Google Scholar 

  • Winter, J., 1981. Exakte tephro-stratigraphische Korrelation mit morphologisch differenzierten Zir- konpopulationen ( Grenzbereich Unter/Mitteldevon, Eifel-Ardennen). N. Jb. Geol. Pal. Abh. 162, 1–56.

    Google Scholar 

  • Wolery, T.J. and Sleep, N.H., 1976. Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol. 84, 249–275.

    Google Scholar 

  • Zielinski, R.A., 1980. Stability of glass in the geologic environment: some evidence from studies of natural silicate glasses. Nucl. Technology 15, 197–200.

    Google Scholar 

  • Zielinski, R.A., 1982. The mobility of uranium and other elements during alteration of rhyolitic ash to montmorillonite: a case study in the Troublesome Formation, Colorado. Chem. Geol. 35, 185–204.

    Google Scholar 

  • Zielinski, R.A., Lindsey, D.A. and Rosholt, J.N., 1980. The distribution and mobility of uranium in glassy and zeolitized tuff, Keg Mountain area, Utah, U.S.A. Chem. Geol. 29, 139–162.

    Google Scholar 

  • Zielinski, R.A., Lipman, P.W. and Millard, H.T. Jr., 1977. Minor element abundances in obsidian, perlite, and felsite in calc-alkalic rhyolites. Amer. Mineral. 62, 426–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, R.V., Schmincke, HU. (1984). Alteration of Volcanic Glass. In: Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74864-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51341-4

  • Online ISBN: 978-3-642-74864-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics