Skip to main content

Submarine Volcaniclastic Rocks

  • Chapter
Pyroclastic Rocks

Abstract

In this chapter we are concerned with underwater volcaniclastic eruptions and products, as well as pyroclastic flows and debris generated on land and transported by mass flowage into the sea. Submarine fallout deposits derived from land-based eruptions are treated in Chapter 7. Clastic materials redistributed as mass flows or turbidity currents originating from the rapid build-up of tephra and epiclastic volcanic debris along coastal parts of volcanoes are also discussed in various places throughout the text (e.g. Chap. 13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, C.C., 1980. Icelandic subglacial volcanism: thermal and physical studies. J. Geol. 88, 108–117.

    Article  Google Scholar 

  • Anderson, T. and Flett, J.S., 1903. Report on the eruption of the Soufrière in St. Vincent in 1902 and on a visit to Montagne Pelée in Martinique, Part I. Philos. Trans. Roy. Soc. London A. 200, 353–553.

    Google Scholar 

  • Batiza, R., 1977. Age, volume, compositional and spatial relations of small isolated oceanic central volcanoes. Mar. Geol. 24, 169–183.

    Article  Google Scholar 

  • Bevins, R.E. and Roach, R.A., 1979. Pillow lava and isolated pillow breccia of rhyodacitic composition from the Fishguard Volcanic Group, Lower Ordovician, S.W. Wales, United Kingdom. J. Geol. 87, 193–201.

    Article  Google Scholar 

  • Bond, G.C., 1973. A late Paleozoic volcanic arc in the eastern Alaska Range, Alaska. J. Geol. 81, 557–575.

    Google Scholar 

  • Bouma, A.H., 1962. Sedimentology of some flysch deposits; A graphic approach to facies interpretation. Elsevier, Amsterdam, 1–168.

    Google Scholar 

  • Buck, P.S.,1976. An early Precambrian caldera in the Favourable Lake metavolcanic-metasedimentary belt, northwestern Ontario. Centre for Precambrian Studies, University of Manitoba, 1975, Ann. Rpt. 108–115.

    Google Scholar 

  • Busby-Spera, C., 1981a. Silicic ash-flow tuffs interbedded with submarine andesitic and sedimentary rocks in lower Mesozoic roof pendants, Sierra Nevada, California (Abst.). Geol. Soc. Amer. Abst. with Programs 13, 47.

    Google Scholar 

  • Busby-Spera, C., 1981b. Early Mesozoic submarine epicontinental calderas in the southern Sierra Nevada, California (Abst.). EOS 62, 1061.

    Google Scholar 

  • Carey, S.N. and Sigurdsson, H., 1980. The Roseau Ash: deep-sea tephra deposits from a major eruption on Dominica, Lesser Antilles Arc. J. Volcanol. Geotherm. Res. 7, 67–86.

    Article  Google Scholar 

  • Carlisle, D., 1963. Pillow breccias and their aquagene tuffs, Quadra Island, British Columbia. J. Geol. 71, 48–71

    Article  Google Scholar 

  • Carlisle, D. and Susuki, T., 1974. Emergent and submergent carbonate-clastic sequences including the Upper Triassic Dilleri and Welleri Zones on Vancouver Island. Can. J. Earth Sci. 11, 254–279.

    Article  Google Scholar 

  • Cas, R., 1978. Silicic lavas in Paleozoic flyschlike deposits in New South Wales, Australia: Behavior of deep subaqueous silicic flows. Geol. Soc. Amer. Bull. 89, 1708–1714.

    Article  Google Scholar 

  • Cousineau, P. and Dimroth, E., 1982. Interpretation of the relations between massive, pillowed and brecciated facies in an Archean submarine andesite volcano - Amulet Andesite, Rouyn-Noranda, Canada. J. Volcanol. Geotherm. Res. 13, 83–102.

    Article  Google Scholar 

  • DeRosen-Spence, A.F., Provost, G., Dimroth, E., Gochnauer, K. and Owen, V., 1980. Archean subaqueous felsic flows, Rouyn-Noranda, Quebec, Canada, and their Quaternary equivalents. Pre-cambrian Res. 12, 43–77.

    Article  Google Scholar 

  • Dewey, J.F., 1963. The Lower Paleozoic Stratigraphy of central Murrisk County, Mayo, Ireland, and the evolution ofthe South Mayo Trough. Q.J. Geol. Soc. London 119, 313–343.

    Article  Google Scholar 

  • Dick, H.J.B., Honnorez, J. and Kirst, P.W., 1978. Origin of the abyssal basaltic sand, sandstone, and gravel from DSDP Hole 396B, Leg 46. In Dmitriev, L., Heirtzler, J., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 46, 331–339.

    Google Scholar 

  • Dimroth, E. and Demarcke, J., 1978. Petrography and mechanism of eruption of the Archean Dalem- bert tuff, Rouyn-Noranda, Quebec, Canada. Can. J. Earth Sci. 15, 1712–1723.

    Article  Google Scholar 

  • Dimroth, E., Cousineau, P., Leduc, M. and Sanschagrin, Y., 1978. Structure and organization of Archean subaqueous basalt flows, Rouyn-Noranda area, Quebec, Canada. Can. J. Earth Sci. 15, 902–918.

    Article  Google Scholar 

  • Dimroth, E., Cousineau, P., Leduc, M., Sanschagrin, Y. and Provost, G., 1979. Flow mechanisms of Archean subaqueous basalt and rhyolite flows. Geol. Surv. Can. Current Res. Paper 79-1 A, 207–211.

    Google Scholar 

  • Fernandez, H.E., 1969. Notes on the submarine ash flow tuff in Siargao Island, Surigao del Norte (Philippines). The Philippine Geologist 23, 29–36.

    Google Scholar 

  • Fisher, R.V., 1971. Features of coarse-grained, high-concentration fluids and their deposits. J. Sed. Petrol. 41, 916–927.

    Google Scholar 

  • Fisher, R.V. and Charleton, D.W., 1976. Mid-Miocene Bianca Formation, Santa Cruz Island, California. In Howell, D.G., ed., Aspects of the geologic history of the California continental borderland. Pacific Section Amer. Assoc. Petrol. Geol., Misc. Publ. 24, 228–240.

    Google Scholar 

  • Fisher, R.V. and Dimroth, E., 1978. Subaqueous volcanic rocks are examined. Geotimes 23, 16–18.

    Google Scholar 

  • Fiske, R.S., 1963. Subaqueous pyroclastic flows in the Ohanapecosh Formation, Washington. Geol. Soc. Amer. Bull. 74, 391–406.

    Article  Google Scholar 

  • Fiske, R.S. and Matsuda, T., 1964. Submarine equivalents of ash flows in the Tokiwa Formation, Japan. Amer. J. Sci. 262, 76–106.

    Article  Google Scholar 

  • Fiske, R.S., Hopson, C.A. and Waters, A.C., 1963. Geology of Mount Rainier National Park, Washington. U. S. Geol. Survey Prof. Paper 444, 1–93.

    Google Scholar 

  • Fleet, A.J. and McKelvey, B.C., 1978. Eocene explosive submarine volcanism, Ninetyeast Ridge, Indian Ocean. Mar. Geol. 26, 73–97.

    Google Scholar 

  • Fornari, D.J., Malahoff, A. and Heezen, B.C., 1979. Visual observations of the volcanic micromorphology of Tortuga, Lorraine and Tutu seamounts; and petrology and chemistry of ridge and seamount features in and around the Panama Basin. Mar. Geol. 31, 1–30.

    Article  Google Scholar 

  • Fox, P.S. and Heezen, B.C., 1965. Sands of the Mid-Atlantic Ridge. Science 159, 1367–1370.

    Article  Google Scholar 

  • Francis, E.H. and Howells, M.F., 1973. Transgressive welded ash flow tuffs among the Ordovician sediments on N. E. Snowdonia, N. Wales. J. Geol. Soc. London 129, 621–641.

    Article  Google Scholar 

  • Fuller, R.E., 1931. The aqueous chilling of basaltic lava on the Columbia River Plateau. Amer. J. Sci. 21, 281–300.

    Article  Google Scholar 

  • Furnes, H., 1972. Meta-hyaloclastite breccias associated with Ordovician pillow lavas in the Solund area, west Norway. Norsk Geol. Tidsskr. 52, 385–407.

    Google Scholar 

  • Furnes, H. and Friedleifsson, I.B., 1979. Pillow block breccia - occurences and mode of formation. N. Jb. Geol. Pal. Mh. 3, 147–154.

    Google Scholar 

  • Furnes, H., Friedleifsson, I.B. and Atkins, F.B., 1980. Subglacial volcanics - on the formation of acid hyaloclastites. J. Volcanol. Geotherm. Res. 8, 95–110.

    Article  Google Scholar 

  • Garrison, R.E., Espiritu, E., Horan, J.J. and Mack, L.E., 1979. Petrology, sedimentology and diagen- esis of hemipelagic limestone and tuffaceous turbidites in the Aksitero Formation, central Luzon, Philippines. U.S. Geol. Survey Prof. Paper 1112, 1–16.

    Google Scholar 

  • Grönvold, K., 1972. Structural and petrochemical studies in the Kerlingarfjoll region, southwest Iceland. Oxford Univ., Ph.D. diss., 1–208.

    Google Scholar 

  • Hall, J.M. and Robinson, P.T., 1979. Deep crustal drilling in the north Atlantic ocean. Science 204, 573–586.

    Article  Google Scholar 

  • Hedervari, P., 1982. A possible submarine volcano near the central part of Ninety-East Ridge, Indian Ocean. J. Volcanol. Geotherm. Res. 13, 199–212.

    Article  Google Scholar 

  • Hentschel, H., 1963. In-situ Brekzien der Unter-Karbonischen Pillowdiabase des Dillgebietes im Rheinischen Schiefergebirge. Bull. Volcanol. 25, 97–107.

    Article  Google Scholar 

  • Hess, H.H., 1946. Drowned ancient islands of the Pacific basin. Amer. J. Sci. 244, 772–791.

    Article  Google Scholar 

  • Honnorez, J., 1972. La Palagonitisation: l’altération sous-marine du verre volcanique basique de Palagonia (Sicile). Vulkaninstitut I. Friedländer No. 9, Birkhäuser Verlag, Basel, Stuttgart, 1–132.

    Google Scholar 

  • Howells, M.F. and Leveridge, B.E., 1980. The Capel Curig Volcanic Formation. Inst. Geol. Sci., London, Rpt. 80 /6, 1–23.

    Google Scholar 

  • Howells, M.F., Leveridge, B.E. and Evans, C.D.R., 1973. Ordovician ash-flow tuffs in eastern Snowdonia. Inst. Geol. Sci., London, Rpt. 73 /3, 1–33.

    Google Scholar 

  • Howells, M.F., Leveridge, B.E., Addison, R., Evans, C.D.R. and Nutt, M.J.C., 1979. The Capel Curig volcanic formation, Snowdonia, North Wales; variations in ash-flow tuffs related to emplacement environment. In The Caledonides of the British Isles. Geol. Soc. London 611–618.

    Google Scholar 

  • Jones, J.G., 1966. Intraglacial volcanoes of southwest Iceland and their significance in the interpretation of the form of marine basaltic volcanoes. Nature 212, 586–588

    Article  Google Scholar 

  • Jones, J.G., 1969a. Intraglacial volcanoes of the Laugarvatn region, south-west Iceland, I. Q. J. Geol. Soc. London 124, 197–211.

    Google Scholar 

  • Jones, J.G., 1970. Intraglacial volcanoes of the Laugarvatn region, southwest Iceland, II. J. Geol. 78, 127–140.

    Article  Google Scholar 

  • Kato, I., Murai, I., Yamazaki, T. and Abe, M., 1971. Subaqueous pyroclastic flow deposits in the upper Donzurubo Formation, Nijo-san district, Osaka, Japan. J. Geol. Soc. Jap. 77, 193–206.

    Google Scholar 

  • Kienle, J. and Swanson, S.E., 1980. Volcanic hazards from future eruptions of Augustine Volcano, Alaska. Univ. Alaska Geophys. Inst. UAG R-275, 1–122.

    Google Scholar 

  • Lacroix, A., 1904. La Montagne Pelée et ses eruptions. Masson et Cie, Paris, 1–662.

    Google Scholar 

  • Lipple, S.L., 1972. Silica-rich pillow lavas near Soansville, Marble Bar, 1:250,000 Sheet. Western Austr. Geol. Survey Ann. Rpt. 52–57.

    Google Scholar 

  • Lonsdale, P.F., 1975. Sedimentation and tectonic modification of the Samoan archipelagic apron. Amer. Assoc. Petrol. Geol. Bull. 59, 780–798.

    Google Scholar 

  • Lonsdale, P. and Batiza, R., 1980. Hyaloclastite and lava flows on young seamounts examined with a submersible. Geol. Soc. Amer. Bull., Part I, 91, 545–554.

    Article  Google Scholar 

  • Lonsdale, P. and Spiess, F.N., 1979. A pair of young cratered volcanoes on the east Pacific Rise. J. Geol. 87, 157–173.

    Article  Google Scholar 

  • Lowman, R.D.W. and Bloxam, T.W., 1981. The petrology of the Lower Paleozoic Fishguard Volcanic Group and associated rocks E of Fishguard, N. Pembrokeshire (Dyfed), South Wales. J. Geol. Soc. London 138, 47–68.

    Article  Google Scholar 

  • Mathews, W.H., 1947. “Tuyas”, flat-topped volcanoes in northern British Columbia. Amer. J. Sci. 245, 560–570.

    Article  Google Scholar 

  • McBirney, A.R., 1963. Factors governing the nature of submarine volcanism. Bull. Volcanol. 26, 455–469.

    Article  Google Scholar 

  • Menard, H.W., 1956. Archipelagic aprons. Amer. Assoc. Petrol. Geol. Bull. 40, 2195–2210.

    Google Scholar 

  • Moore, J.G., 1965. Petrology of deep-sea basalt near Hawaii. Amer. J. Sci. 263, 40–52.

    Article  Google Scholar 

  • Moore, J.G., 1975. Mechanism of formation of pillows. Amer. Scientist 63, 269–277.

    Google Scholar 

  • Moore, J.G. and Fiske, R.S., 1969. Volcanic substructure inferred from dredge samples and ocean-bottom photographs, Hawaii. Geol. Soc. Amer. Bull. 80, 1191–1202.

    Article  Google Scholar 

  • Moore, J.G. and Schilling, J.G., 1973. Vesicles, water, and sulfur in Reykjanes Ridge basalts. Contr. Mineral. Petrol. 41, 105–118.

    Article  Google Scholar 

  • Moore, J.G., Phillips, R.L., Grigg, R.W., Peterson, D.W. and Swanson, D.A., 1973. Flow of lava into the sea 1969–1971, Kilauea Volcano, Hawaii. Geol. Soc. Amer. Bull. 84, 537–546.

    Article  Google Scholar 

  • Murai, I., 1961. A study of the textural characteristics of pyroclastic flow deposits in Japan. Tokyo Univ. Earthq. Res. Inst. Bull. 39, 133–248.

    Google Scholar 

  • Mutti, E., 1965. Submarine flood tuffs (ignimbrites) associated with turbidites in Oligocene deposits of Rhodes Island (Greece). Sedimentology 5, 265–288.

    Article  Google Scholar 

  • Niem, A.R., 1977. Mississippian pyroclastic flow and ash-fall deposits in the deep-marine Ouachita flysch basin, Oklahoma and Arkansas. Geol. Soc. Amer. Bull. 88, 49–61.

    Article  Google Scholar 

  • Pimm, A.C., 1974. Sedimentology and history of the northeastern Indian Ocean from Late Cretaceous to Recent. In Borch et al., eds., Init. Repts. Deep Sea Drilling Proj. 22, 717–803.

    Google Scholar 

  • Provost, G., 1978. Les rhyolites du Complexe “Don”, Région de Rouyn-Noranda, Abitibi-Ouest. Polytechn. School, Montreal, M.Sc. thesis, 1–87.

    Google Scholar 

  • Riehle, J.R., 1973. Calculated compaction profiles of rhyolitic ash-flow tuffs. Geol. Soc. Amer. Bull. 84, 2193–2216.

    Article  Google Scholar 

  • Rittmann, A., 1958. Il meccanismo di formazione delle lave a pillows e dei cosidetti tufi palagonitici. Atti Acc. Gioenia 4, 310–317.

    Google Scholar 

  • Ross, C.S. and Smith, R.L., 1961. Ash-flow tuffs: their origin, geologic relations and identification. U.S. Geol. Survey Prof. Paper 366, 1–77.

    Google Scholar 

  • Saemundsson, K., 1972. Notes on the geology of the Torfajokull central volcano. Natturufraedingnum 42, 81–99.

    Google Scholar 

  • Scheidegger, K.F. and Kulm, L.D., 1975. Late Cenozoic volcanism in the Aleutian arc; information from ash layers in the northeastern Gulf of Alaska. Geol. Soc. Amer. Bull. 86, 1407–1412.

    Article  Google Scholar 

  • Scherp, A. and Grabert, H., 1983. Unterdevonische Schmelztuffe im rechtsrheinischen Schiefergebirge. N. Jb. Geol. Pal. Mh., 47–58.

    Google Scholar 

  • Schmincke, H.-U., 1967b. Graded lahars in the type section of the Ellensburg Formation, south-central Washington. J. Sed. Petrol. 37, 438–448.

    Google Scholar 

  • Schmincke, H.-U., 1973. Magmatic evolution and tectonic regime in the Canary, Madeira and Azores Island Groups. Geol. Soc. Amer. Bull. 84, 633–648.

    Article  Google Scholar 

  • Schmincke, H.-U., 1982a. Volcanic and chemical evolution of the Canary Islands. In von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E., eds., Geology of the Northwest African Continental Mar-gin. Springer-Verlag, Berlin, Heidelberg, New York, 273–308.

    Google Scholar 

  • Schmincke, H.-U. and von Rad, U., 1979. Neogene evolution of Canary Island volcanism inferred from ash layers and volcaniclastic sandstones of DSDP site 397 (Leg 47A). In von Rad, U., Ryan, W.B.F., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 47, pt. I, 703–725.

    Google Scholar 

  • Schmincke, H.-U. and Staudigel, H., 1976. Pillow lavas on central and eastern Atlantic Islands (La Palma, Gran Canaria, Porto Santo, Santa Maria). Bull. Soc. Geol. France 7, 871–883.

    Google Scholar 

  • Schmincke, H.-U., Robinson, P.T., Ohnmacht, W. and Flower, M.F.J., 1978. Basaltic hyaloclastites from Hole 396B, DSDP Leg 46. In Dmitriev, L., Heirtzler, J., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 46, 341–355.

    Google Scholar 

  • Schmincke, H.-U., Viereck, L.G., Griffin B.J. and Pritchard, R.G., 1982. Volcaniclastic rocks of the Reydarfjordur drill hole, Eastern Iceland I. Primary features. J. Geophys. Res. 87, 6437–6458.

    Article  Google Scholar 

  • Schmincke, H.-U., Rautenschlein, M., Robinson, P.T. and Mehegan, J.M., 1983. The Troodos Extrusive Series of Cyprus: a comparison with oceanic crust. Geology 11, 410–412.

    Article  Google Scholar 

  • Self, S. and Rampino, M.R., 1981. The 1883 eruption of Krakatau. Nature 294, 699–704.

    Article  Google Scholar 

  • Sigvaldasson, G.E., 1968. Structure and products of subaquatic volcanoes in Iceland. Contr. Mineral, and Petrol. 18, 1–16.

    Article  Google Scholar 

  • Simon, M. and Schmincke, H.-U., 1983. Late Cretaceous volcaniclastic rocks from the Walvis Ridge, Southeast Atlantic, Leg 74. In Moore, T.C., Jr., Rabinowitz, P.D., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 74, 765–792.

    Google Scholar 

  • Smith, R.L., 1960a. Ash flows. Geol. Soc. Amer. Bull. 71, 795–842.

    Article  Google Scholar 

  • Sparks, R.S.J., Sigurdsson, H. and Carey, S.N., 1980a. The entrance of pyroclastic flows into the sea, I. Océanographic and geologic evidence from Dominica, Lesser Antilles. J. Volcanol. Geotherm. Res. 7, 87–96.

    Article  Google Scholar 

  • Sparks, R.S.J., Sigurdsson, H. and Carey, S.N., 1980b. The entrance of pyroclastic flows into the sea, II. Theoretical considerations on subaqueous emplacement and welding. J. Volcanol. Geotherm. Res. 7, 97–105. 10

    Google Scholar 

  • Stanley, D.J. and Taylor, P.T., 1977. Sediment transport down a seamount flank by a combined current and gravity process. Mar. Geol. 23, 77–88. 10

    Google Scholar 

  • Stanley, D.J. and Taylor, P.T., 1977. Sediment transport down a seamount flank by a combined current and gravity process. Mar. Geol. 23, 77–88.

    Google Scholar 

  • Stanton, W.I., 1960. The lower Paleozoic rocks of south-west Murrisk, Ireland. Q. J. Geol. Soc. London 116, 269–296.

    Article  Google Scholar 

  • Staudigel, H. and Schmincke, H.-U., 1984. The pliocene seamount series of La Palma (Canary Islands). J. Geophys. Res. 89 (in press).

    Google Scholar 

  • Staudigel, H., Frey, F. and Hart, S.R., 1979. Incompatible trace element geochemistry and 87Sr/86Sr in basalts and corresponding glasses and palagonites. In Donelly, T., Francheteau, H., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 51–53, 1137–1143.

    Google Scholar 

  • Staudigel, H., Hart, S.R. and Richardson, S.H., 1981. Alteration of the oceanic crust: processes and timing. Earth Planet. Sci. Lett. 52, 311–327

    Article  Google Scholar 

  • Tassé, N., Lajoie, J. and Dimroth, E., 1978. The anatomy and nterpretation of an Archean volcaniclastic sequence, Noranda region, Quebec. Can. J. Earth Sci. 15, 874–888.

    Article  Google Scholar 

  • Vallier, T.L. and Kidd, R.B., 1977. Volcanogenic sediments in the Indian Ocean. In Heirtzler, J.R., et al., eds., Indian Ocean geology and biostratigraphy. Amer. Geophys. Un. 87–118.

    Google Scholar 

  • Vallier, T.L., Bohrer, D., Moreland, G., McKee, E.E., 1977. Origin of basalt microlapilli in lower Miocene pelagic sediment, northeastern Pacific Ocean. Geol. Soc. Amer. Bull. 88, 787–796.

    Article  Google Scholar 

  • Van Andel, Tj.H. and Ballard, R.D., 1979. The Galapagos Rift at 86° W:2. Volcanism, structure and evolution of the rift valley. J. Geophys. Res. 84, 5390–5406.

    Article  Google Scholar 

  • Walker, G.P.L., 1971. Grain-size characteristics of pyroclastic deposits. J. Geol. 79, 696–714.

    Article  Google Scholar 

  • Walker, G.P.L., 1979. A volcanic ash generated by explosions where ignimbrite entered the sea. Nature 281, 642–646.

    Article  Google Scholar 

  • Walker, G.P.L. and Croasdale, R., 1972. Characteristics of some basaltic pyroclastics. Bull. Volcanol. 35, 303–317.

    Article  Google Scholar 

  • Walker, R.G., 1975. Generalized facies models for resedimented conglomerates of turbidite association. Geol. Soc. Amer. Bull. 86, 737–748.

    Article  Google Scholar 

  • Wright, J.V. and Coward, M.P., 1977. Rootless vents in welded ash flow tuffs from northern Snowdonia, Northern Wales, indicating deposition in a shallow water environment. Geol. Mag. 114, 133–140.

    Article  Google Scholar 

  • Wright, J.V. and Mutti, E., 1981. The Dali Ash, Island of Rhodes, Greece: a problem in interpreting submarine volcanigenic sediments. Bull. Volcanol. 44–2, 153–167.

    Article  Google Scholar 

  • Yamada, E., 1973. Subaqueous pumice flow deposits in the Onikobe Caldera, Miyagi Prefecture, Japan. J. Geol. Soc. Jap. 79, 585–597.

    Google Scholar 

  • Yamazaki, T., Kato, I., Muroi, I. and Abe, M., 1973. Textural analysis and flow mechanism of the Don- zurubo subaqueous pyroclastic flow deposits. Bull. Volcanol. 37, 231–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, R.V., Schmincke, HU. (1984). Submarine Volcaniclastic Rocks. In: Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74864-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51341-4

  • Online ISBN: 978-3-642-74864-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics