Optimal Control with Multiple Criteria and Time Lags: Some Economic Applications

  • Mohamed El-Hodiri
  • Fred S. Van Vleck
Conference paper
Part of the Operations Research Proceedings book series (ORP, volume 1988)


Consider a system where the motion is given by
$$ x\left( t \right)\, = \,f\left( {t,\;x\left( {t - {z_{r}}} \right), \ldots ,\;x\left( {t - {z_{1}}} \right),\;x\left( t \right),\;u\left( {t - {\alpha _{3}}} \right)\;,\; \ldots ,u\left( {t - {\alpha _{1}}} \right),\;u\left( t \right)} \right) = f\left( {t,x,v} \right) $$
where x(t) ∈ En and u(t) ∈ Em for any given t, where X represents all state variables-current and delayed- and where U represents all control variables.


Cash Flow Marginal Utility Constraint Qualification Pareto Solution Investment Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ragner Frisch: The mathematical structure of a decision model: The Oslo submodel. Metroeconomica, vol. 7, 1955.Google Scholar
  2. 2.
    A. Halanay: Optimal control for systems with time lags. SIAM Journal on Control, vol. 6, 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Mohamed El-Hodiri
    • 1
  • Fred S. Van Vleck
    • 2
  1. 1.Dept of EconomicsUniversity of KansasUSA
  2. 2.Dept of MathematicsUniv. of KansasUSA

Personalised recommendations