Applications of Morphometry in Non-tumour Pathology

  • J. P. A. Baak
  • C. J. L. M. Meijer
  • J. Lindeman
  • J. Oort
  • P. Averback
  • H. Wehner
  • M. Oberholzer
  • H. P. Rohr
  • J. Puittinen
  • Y. Collan
  • C. J. Cornelisse

Abstract

Intolerance to certain food is clinically obvious and it is important to distinguish between non-immunological causes, allergic reactions and functional gastrointestinal disorders. Immunological tests are not always helpful and false positive skin tests frequently occur in atopic individuals due to non-specific histamine liberators. Radioallergosorbant test (RAST) for specific IgE dietary antibodies is also not reliable in the diagnosis of food allergy. The study of jejunal biopsies is more specific, but although partial villous atrophy and an increased number of intraepithelial lymphocytes are found in children, in adult patients no morphological changes of the jejunal mucosa are found with qualitative investigations. However, morphometry of immunoperoxidase-stained jejunal biopsies showed a marked increase of IgE-containing cells in the lamina propria, irrespective of the type of foodstuff, both in children and adults (Rosekrans et al, 1980), and these data are described below.

Keywords

Formalin Hepatitis Osteoporosis Shrinkage Infertility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosekrans, P.C.M., Meijer, C.J.L.M., Comelisse, C.J., Wai, A.M. van der and Lindeman, J. (1980). Use of morphometry and immunohistochemistry of small intestinal biopsy specimens in the diagnosis of food allergy. J. Clin. Pathol. 33, 125–130.PubMedGoogle Scholar

References

  1. Rosekrans, P.C.M., Meijer, C.J.L.M., Wal, A.M. van der, Cornelisse, C.J. and Lindeman, J. (1980a). Immunoglobulin-containing cells in inflammatory bowel disease of the colon (a morphometrie and immunohistochemical study). Gut 21, 941–947.PubMedGoogle Scholar
  2. Rosekrans, P.C.M., Meijer, C.J.L.M., Wal, A.M. van der and Lindeman, J. (1980b). Allergic proctitis, a clinical and immunopathological entity. Gut 21, 1017–1023.PubMedGoogle Scholar
  3. Rosekrans, P.C.M., Lindeman, J. and Meijer, C.J.L.M. (1981). Quantitative histological findings in jejunal biopsy specimens in giardiasis. Virchows Arch. (Pathol. Anat.) 393, 145–151.Google Scholar

References

  1. Saito, K., Iwama, N., Takahashi, T. (1978a). Morphometrical analysis of topographical differences in size distribution, number and volume of islets in the human pancreas. Tohoku J. Exp. Med. 124, 177–186.PubMedGoogle Scholar
  2. Saito, K., Takahashi, T., Yaginuma, N. and Iwama, N. (1978b). Islet morphometry in the diabetic pancreas of man. Tohoku J. Exp. Med. 125, 185–197.PubMedGoogle Scholar
  3. Saito, K., Yaginuma, N. and Takahashi, T. (1979). Differential volumetry of A,B and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J. Exp. Med. 129, 273–283.PubMedGoogle Scholar
  4. Takahashi, T., Saito, K., Yaginuma, N., Iwama, N., Sawai, T. and Suwa, N. (1982). A stereological method of granulometry applied to islet morphometry in diabetic pancreas. In: Morphometry in morphological diagnosis, Y. Collan and T. Romppanen, editors, Kuopio University Press, Kuo-pio, pp. 123–133.Google Scholar
  5. Weibel, E.R. (1979). Stereological methods. Vol. I. Practical methods for biological morphometry. Academic Press, London, p. 239.Google Scholar

Reference

  1. Imrie, J.R., Fagan, D.G., Sturgess, J.M. (1979). Quantitative evaluation of the development of the exocrine pancreas in cystic fibrosis and control infants. Am. J. Pathol. 95, 697–708.PubMedGoogle Scholar

References

  1. Aherae W. and Dunnill, M.S. (1966). Quantitative aspects of placental structure. J. Pathol. 91, 123–139.Google Scholar
  2. Bouw, G.M. (1975). Growth and growth retardation of the human placenta. Ph.D. thesis, Free University, Amsterdam.Google Scholar
  3. Bouw, G.M., Stolte, L.A.M., Baak, J.P.A. and Oort, J. (1976). Quantitative morphology of the placenta. I. Standardization of sampling. Eur. J. Obstet. Gynecol. Reprod. Biol. 6/6, 325–331.Google Scholar
  4. Bouw, G.M., Stolte, L.A.M., Baak, J.P.A. and Oort, J. (1978). Quantitative morphology of the placenta. III. The growth of the placenta and its relationship to birth weight. Eur. J. Obstet. Gynecol. Reprod. Biol. 8/2, 73–76.PubMedGoogle Scholar
  5. Dunnill, M.S. (1975). Measurement in pathology. Hum. Pathol. 6/2, 138–138.Google Scholar
  6. Kjessler, B., Holmquist, G., Johansson, S.G.O., Sherman, M.S. and Gustavson, K.H. (1977). Antenatal diagnosis of congenital nephrosis of the Finnish type. Acta Obstet. Gynecol. Scand. (Suppl.) 69, 59–77.Google Scholar
  7. Laga, E.M., Driscoll, S.G. and Munro, H.N. (1973). Quantitative studies of human placenta. Biol. Neonate 23, 231–259.PubMedGoogle Scholar
  8. Yao, A.C., Moinian, M. and Lind, J. (1969). Distribution of blood between infant and placenta after birth. Lancet 2, 871.PubMedGoogle Scholar

References

  1. Averback, P. (1980) Histopathological diagnosis of hypereurved seminiferous tubules. Histopathology 4, 75–82.PubMedGoogle Scholar
  2. Averback, P. and Wight, D.G.D. (1979) Seminiferous tubule hypercurvature: a newly recognized common syndrome of human male infertility. Lancet 1, 181–183 and 384-385.PubMedGoogle Scholar
  3. Baddeley, A. (1979). Absolute curvatures in integral geometry. Mathematical Proceedings of the Cambridge Philosophical Society.Google Scholar
  4. Dop, P.A. van, Kurver, P.H.J., Scholtmeyer, R.J., Baak, J.P.A., Oort, J., and Stolte, L.A.M. (1980). Correlation between the quantitative morphology of the human testis and sperm production. The testis of healthy men with sperm counts. Int. J. Androl. 3, 170–176.PubMedGoogle Scholar
  5. Dykes, J.R.W. (1969). Histometric assessment of human testicular biopsies. J. Pathol. 97, 429–440.PubMedGoogle Scholar
  6. Kleinteich, V.B. and Schickendanz, H. (1977). Der Einfluss der Fixierung hodenbioptischer Praeparate von Ratten auf morphometrische Untersuchungsergebnisse. Z. Urol. Nephrol. 70, 663–668.PubMedGoogle Scholar
  7. Lamont, M.A., Faed MJ.W. and Baxby, K. (1981). Comparative studies of spermatogenesis in fertile and subfertile men. J. Clin. Pathol. 34, 145–150.PubMedGoogle Scholar
  8. Lennox, B. (1981). The infertile testis. Recent Adv. in Histopathol. 11, 135–148.Google Scholar
  9. Skakkebaek, N.E. and Heller, C.G. (1973). Quantification of human seminiferous epithelium. I. Histological studies in twenty-one fertile men with normal chromosome complements. J. Reprod. Fertil. 32, 379–401 and Acta Pathol. Microbiol. Scand. [A] 81, 97-124.PubMedGoogle Scholar
  10. Zukerman, Z., Rodriguez-Rigau, L.J., Weiss, D.B., Chowdhury, A.K., Smith K.D., and Steinberger E. (1978). Quantitative analysis of the seminiferous epithelium in human testicular biopsies and the relation of spermatogenesis to sperm density. Fertil. Steril. 30, 448–455.PubMedGoogle Scholar

References

  1. Aafjes, J.H., Vijver, J.C.M. van der and Schenck, P.E. (1978) Value of a testicular biopsy rating for prognosis in oligozoospermia. Br. Med. J. 1, 289–290.PubMedGoogle Scholar
  2. Dop, P.A. van (1979). Quantitative morphology of the testis of fertile and infertile males. Ph.D. thesis, Free University, Amsterdam.Google Scholar
  3. Dop, P.A. van, Scholtmeijer, R.J., Kurver, P.H.J., Baak, J.P.A., Oort, J. and Stolte, L.A.M. (1980). A quantitative structural model of the testis of fertile males with normal sperm count. Int. J. Androl. 3, 153–169.PubMedGoogle Scholar
  4. Hellinga, G., Swaen, G.J.V. and Esch, E.R. van der (1972). Morphological semi-quantitative scoring of testicular biopsies in infertility. Andrologie 4, 55–61.PubMedGoogle Scholar
  5. Johnson, S.G. (1970). Testicular biopsy score count, a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1, 2–25.Google Scholar
  6. Simmons, F.A. (1952) Correlation of testicular biopsy material with semen analysis in male infertility. Ann. N.Y. Acad. Sci. 55, 643–656.PubMedGoogle Scholar
  7. Yodaiken, R.E. (1978). Testicular biopsy in oligozoospermia. Br. Med. J. 1, 1421.PubMedGoogle Scholar

References

  1. Elias, H. and Hennig, A. (1967). Stereology of the human renal glomerulus. In: Quantitative methods in morphology, E.R. Weibel and H. Elias, editors, Springer, Berlin, pp. 130–166.Google Scholar
  2. Hanberg-Sorensen, F. (1975). Quantitative studies of the renal corpuscles. III. The influence of post mortem delay before taking renal tissue samples and of the duration of tissue fixation. Acta Pathol. Microbiol. Scand. [A] 83, 251–258.Google Scholar
  3. Kawano, K., Arakawa, M., McCoy, J., Porch, J., and Kämmelstiel, P. (1969). Quantitative study of glomeruli. Focal glomerulonephritis and diabetic glomerulosclerosis. Lab. Invest. 21, 269–275.PubMedGoogle Scholar
  4. Kawano, K., McCoy, J., Wenzl, J., Porch, J., Howard, C, Goddard, M. and Kimmelstiel, P. (1971). Quantitation of glomerular structure. A study of methodology. Lab. Invest. 25, 343–348.Google Scholar
  5. Romppanen, T. and Collan, Y. (1981). Morphometrical method for analysis of kidney biopsies in diagnostic histopathology. Stereol.Jugosl. 3, Suppl. 1, 435–422.Google Scholar
  6. Torhorst, J. (1974). Studies on the pathogenesis and morphogenesis of glomerulonephrosis (application of a newly developed morphometric method). Current Topics in Pathology, vol. 59, Springer, Berlin.Google Scholar
  7. Wehner, H. (1968). Stereologische Untersuchungen am Mesangium normaler menschlicher Nieren. Virchows Arch. (Pathol. Anat.) 344, 286–294.Google Scholar
  8. Wehner, H. (1974). Quantitative Pathomorphologie des Glomerulum der menschlichen Niere, Veröff. a.d. Pathol. 95, Fischer, Stuttgart.Google Scholar
  9. Wehner, H. (1981). Morphometry in nephro-pathology. Stereol. Jugosl. 3, (Suppl. 1), 449–461.Google Scholar
  10. Zollinger, H.U. and Mihatsch, M.J. (1978). Renal pathology in biopsy. Springer, Berlin.Google Scholar

References

  1. Budd, G.C. (1982). Liver stereology. In: Basic and clinical hepatology. P.M. Motta and L.J.A. DiDio, editors, Martinus Nyhoff Publishers, The Hague, pp. 97–117.Google Scholar
  2. Desmet, V.J., Groote, J. de and Damme, B. van (1972). Acute hepatocellular failure. A study of 17 patients with exchange transfusion. Hum. Pathol. 3, 167–175.PubMedGoogle Scholar
  3. Gazzard, B.G., Portman, B., Murray-Lyon, I.M. and Williams, R. (1975). Causes of death in fulminant hepatic failure of parenchymal damage. Q.J. Med. 44, 615–626.PubMedGoogle Scholar
  4. Goetze, H., Sidiropoulos, D., Hess, F.A. and Berthelot, P. (1972). Das Crigler-Najjarsyndrom. Klinische, biochemische, morphologische und therapeutische Aspekte. Helv. Paediat. Acta 27, 335–351.Google Scholar
  5. Hess, F.A., Gnaegi, H.R., Weibel, E.R. and Preisig, R. (1973). Morphometry of dog liver: comparison of wedge and needle biopsies. Eur. J. Clin. Invest. 3, 451–458.PubMedGoogle Scholar
  6. Jezequel, A.M., Mosca, P.C., Koch, M.M. and Orlandi, F. (1981). The fine morphology of unconjugated hyperbilirabinemia revised with stereometry. In: Familial hyperbüirubinemia. L. Okol-icsanyi, editor, John Wiley and Sons Ltd., London, pp. 69–79.Google Scholar
  7. Koch, M.M., Freddara, U., Lorenzini, L, Giampieri, M.P., Jezequel, A.M. and Orlandi, F. (1978). A stereological and biochemical study of the human liver in uncomplicated cholelithiasis. Digestion 18, 162–177.PubMedGoogle Scholar
  8. Loud, A.V. (1968). A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. Cell Biol. 37, 27–35.PubMedGoogle Scholar
  9. Novikoff, A.B. (1959). Cell heterogeneity within the hepatic lobule of the rat (staining reactions). J. Histochem. Cytochem. 7, 240–244.PubMedGoogle Scholar
  10. Paliard, P., Patricot, F. and Grimand, J.A. (1972). Les alterations histologiques des hepatites graves et leur evolution. A propos de 45 observations suivies par biopsies. Ann. Gastroenterol. Hepatol. 8, 133–150.Google Scholar
  11. Reith, A., Barnard, T. and Rohr, H.P. (1976). Stereology of cellular reaction patterns. CRC Crit. Rev. Toxicol. 4, 219–269.PubMedGoogle Scholar
  12. Roessner, A., Bachwinkel, K.P. and Themann, H. (1975). Feinstrukturell-morphometrische Untersuchungen an Lebern von jungen und alten Ratten. Zentralbl. Allg. Pathol. 119, 458.Google Scholar
  13. Roessner, A., Kolde, G., Stahl. K., Blanke, G., Husen, N. van, and Themann, H. (1978). Ultrastructural morphometric investigation of normal human liver biopsies. Acta Hepato-Gastroenterol. 25, 119–123.Google Scholar
  14. Rohr, H.P., Hundstad, A.C., Bianchi, L. and Eckert, H. (1970). Morphometrische-ultrastrukturelle Untersuchungen über die durch die Tageszeit induzierten Veränderungen der Rattenleberparen-chymzelle. Acta Anat. (Basel) 76, 102–111.Google Scholar
  15. Rohr, H.P., Luethy, J., Gudat, F., Oberholzer, M., Gysin, C. and Bianchi, L. (1976). Stereology of liver biopsies from healthy volunteers. Virchows Arch. (Pathol. Anat.) 371, 251–263.Google Scholar
  16. Schmucker, D.L. (1976). Age-related changes in hepatic fine structure: a quantitative analysis. J. Gerontol. 31, 135–143.PubMedGoogle Scholar
  17. Scotto, J., Opolon, P., Eteve, J., Vergoz, D., Thormas, M. and Caroli, J. (1973). Liver biopsy and prognosis in acute liver failure. Gut 14, 927–933.PubMedGoogle Scholar
  18. Volmer, J. and Lueders, C.J. (1981). Morphometric investigations on the portal tracts of the liver: the differentiation of variable progression in chronic persistent hepatitis. Virchows Arch. (Pathol. Anat.) 392, 321–337.Google Scholar

References

  1. Angus, G.E. and Thurlbeck. W.M. (1972). Number of alveoli in the human lung. J. Appl. Physiol. 32, 483–485.PubMedGoogle Scholar
  2. Collan, Y. (1982). Reproducibility, the neglected cornerstone of medical diagnostics. In: Morphometry in morphological diagnosis. Y. Collan and T. Romppanen, editors. Kuopio University Press, Kuo-pio,pp. 5–21.Google Scholar
  3. Cosio, M.G., Hale, K.A. and Niewoehner, D.E. (1980). Morphologic and morphometric effect of prolonged cigarette smoking on the small airways. Am. Rev. Respir. Dis. 122, 265–271.PubMedGoogle Scholar
  4. Crowley, D., Heidelberger, K. and Rosenthal, A. (1979). Influence of morphometric changes of pulmonary vasculature on right ventricular systolic time intervals in patients with left-to-right shunts (Abstract). Pediatr. Res. 13, 342.Google Scholar
  5. Dunnill, M. (1962). Postnatal growth of the lung. Thorax 17, 329–332.Google Scholar
  6. Gehr, P., Bachofen, M. and Weibel, E.R. (1978). The normal lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32,121–140.PubMedGoogle Scholar
  7. Gerstl, B., Switzer, P. and Yesner, R.A. (1974). A morphometric study of pulmonary cancer. Cancer Res. 34,248–254.PubMedGoogle Scholar
  8. Gerstl, B., Wong, S. and Yesner, R.A. (1976). Quantitative microscopy of epidermoid lung carcinoma: correlation with survival time. J. Nat. Cancer Inst. 56, 463–469.PubMedGoogle Scholar
  9. Gil, J.. Bachofen, H., Gehr, P. and Weibel, E.R. (1979). Alveolar volume-surface area relation in air-and saline-filled lungs fixed by vascular perfusion. J. Appl. Physiol. 47, 990–1001.PubMedGoogle Scholar
  10. Gough, J. and Wentworth, J.E. (1960). Thin section of entire organs mounted on paper. In: Recent Adv. Pathol. 80–86.Google Scholar
  11. Haworth, S.G. and Reid, L. (1978). A morphometric study of regional variations of lung structures in infants with pulmonary hypertension and congenital cardiac defect. A justification of lung biopsy. Br. Heart J. 40, 825–831.PubMedGoogle Scholar
  12. Heard, B., Esterly, J.R. and Wootliff, J.S. (1967). A modified apparatus for fixing lungs to study the pathology of emphysema. Am. Rev. Respir. Dis. 95, 311.PubMedGoogle Scholar
  13. Hicken, P., Brewer, D. and Heath, D. (1966). The relation between the weight of the right ventricle and the heart and the internal surface area and number of alveoli in human lungs in emphysema. J. Pathol. Bacteriol. 42, 529–546.Google Scholar
  14. Hislop, A. and Reid, L. (1972). Intra-pulmonary arterial development during fetal life — branching pattern and structure. J. Anat. 113, 35–48.PubMedGoogle Scholar
  15. Matsuba, K. and Thurlbeck, W.M. (1971). The number and dimension of small airways in nonem-physematous lungs. Am. Rev. Respir. Dis. 104, 516–524.PubMedGoogle Scholar
  16. Puittinen, J. (1982a). Morphometric studies on perinatal lung development. 1. Description of methods. In: Morphometry in morphological diagnosis, Y. Collan and T. Romppanen, editors, Kuopio University Press, Kuopio, pp. 181–190.Google Scholar
  17. Puittinen, J. (1982b). Morphometric studies on perinatal lung development. 2. Reconstruction model of lung acinus. In: Morphometry in morphological diagnosis, Y. Collan and T. Romppanen, editors, Kuopio University Press, Kuopio, pp. 191–202.Google Scholar
  18. Rabinovitch, M., Haworth, S.G., Castaneda, A.R., Nadas, A.S. and Reid, L. (1978). Lung biopsy in congenital heart disease! a morphometric approach to pulmonary vascular disease. Circulation 58, 1107–1122.PubMedGoogle Scholar
  19. Reid, L. (1960). Measurements of the bronchial mucous gland layer: A diagnostic yardstick in chronic bronchitis. Thorax 15, 132.PubMedGoogle Scholar
  20. Riede, U.N., Joachim, H., Hassenstein, J., Costabel, U., Sandritter, W., Augustin, P. and Mittermayer, Ch. (1978). The pulmonary air-blood barrier of human shock lungs (a clinical, ultrastructural and morphometric study). Pathol. Res. Pract. 162, 41–72.PubMedGoogle Scholar
  21. Riede, U.N., Mittermayer, Ch., Horn, R., Friedburg, H. and Sandritter, W. (1980). Funktionelle Pathologie der menschlichen Schocklunge. Med. Welt 31, 491–501.PubMedGoogle Scholar
  22. Slotema, R., Dykman, J.H. and Vries de, E. (1980). Electron microscopy of lung tissue from patients with interstitial lung fibrosis. Morphometric findings and physiological aspects. Ultramicroscopy 5, 102.Google Scholar
  23. Sutinen, S., Pääkkö, P. and Lahti, R. (1979). Post-mortem inflation, radiography, and fixation of human lungs. A method for radiological and pathological correlation and morphometric studies. Scand. J. Resp. Dis. 60, 29–35.Google Scholar
  24. Thurlbeck, W.M. (1968). Chronic obstructive lung disease. Pathol. Annu. 3, 367–398.Google Scholar
  25. Thurlbeck, W.M. (1978). Postnatal growth of the lung and its significance in disease. Hum. Pathol. 9, 492–493.PubMedGoogle Scholar
  26. Wagenvoort, C.A. (1975). Pathology of congestive pulmonary hypertension. Prog. Respir. Res. 9, 195–202.Google Scholar
  27. Wagenvoort, C.A. and Wagenvoort, N. (1965). Age changes in muscular pulmonary arteries. Arch. Pathol. 79, 524–528.PubMedGoogle Scholar
  28. Wagenvoort, C.A. and Wagenvoort, N. (1974). The pathology of pulmonary veno-occlusive disease. Virchows Arch. (Pathol. Anat.) 364, 69–79.Google Scholar
  29. Weibel, E.R. (1961). Morphometry of the human lung. Springer, Berlin.Google Scholar
  30. Weibel, E.R. (1979). Morphometry of the human lung: the state of the art after two decades. Bull. Eur. Physiopathol. Respir. 15, 999–1013.PubMedGoogle Scholar
  31. Whimster, W.F. (1969). Rapid giant paper sections of lungs. Thorax 24, 737–741.PubMedGoogle Scholar

References

  1. Birkenhaeger-Frenkel, D.H., Juttmann, J.R., Krimpen, C. van and Birkenhaeger, J.C. (1981). Effect of treatment of renal bone disease with 1-alpha-hydroxy derivatives of vitamin D as assessed by bone histomorphometry. Calcif. Tissue Int., suppl. to vol. 33, abstract 41.Google Scholar
  2. Delling, G., Schulz, A. and Scifert, G. (1979). Histomorphometric analysis of bone changes in surgical primary hyperparathyroidism and nephrolithiasis — the importance of bone biopsy in diagnosis. Pathol. Res. Pract. 166, 90–100.PubMedGoogle Scholar
  3. Dunnill, M.S., Anderson, J.A. and Whitehead, R. (1967). Quantitative histological studies on age changes in bone. J. Pathol. Bacteriol. 94, 275–291.PubMedGoogle Scholar
  4. Garner, A. and Ball, J. (1966). Quantitative observations of mineralised and unmineralised bone in chronic renal azotaemia and intestinal malabsorption syndrome. J. Pathol. Bacteriol. 91, 545–561.PubMedGoogle Scholar
  5. Garrick, R., Doman, P. and Posen, S. (1972). Quantitative histology of bone: The use of a computer program and results in normal subjects. Clin. Sci. 43, 789–797.PubMedGoogle Scholar
  6. Le Charpentier, Y., Patri, B., Dubrisay, J., Forest, M., Daudet-Monsac, M., Carlioz, A. and Abelanet, R. (1979). Bone in hepatic cirrhosis: morphometric and biological study. Sem. Hop. 55, 21–22, pp. 1101-1104.Google Scholar
  7. Meisen, F. and Mosekilde, L. (1977). Morphometric and dynamic studies of bone changes in hyperthyroidism. Acta pat. microbiol. Scand. Sect. A., 85, 141–150.Google Scholar
  8. Meisen, F. and Nielsen, H.E. (1977). Osteonecrosis following renal allotransplantation. A quantitative histologic study of iliac bone. Acta Pathol. Microbiol. Scand. [A] 85, 99–104.Google Scholar
  9. Meunier, P. (1977). Second workshop on bone morphometry. Société de la Nouvelle Imprimerie Fournie, Toulouse.Google Scholar
  10. Meunier, P. and Courpron, P. (1973). Iliac trabecular bone volume in 236 controls — representativeness of iliac samples. In: Proceedings of the first workshop on bone morphometry, Z.F.G. Jaworski, editor, University of Ottawa Press, Ottawa, pp. 100–105.Google Scholar
  11. Meunier, P. Edouard, C, Richard, D. and Laurent, J. (1977). Histomorphometry of osteoid tissue in the hyperosteoidoses. In: Second workshop on bone morphometry, P. Meunier, editor, Societe de la Nouvelle Imprimerie Fournie, Toulouse, pp. 249–262.Google Scholar
  12. Olah, A.J. (1980). Effects of microscopic resolution on histomorphometrical estimates of structural and remodeling parameters in cacellous bone. Pathol. Res. Pract. 166, 313–322.PubMedGoogle Scholar
  13. Woods, C.G., Morgan, D.B., Paterson, C.R. and Gossmann, H.H. (1968). Measurement of osteoid in bone biopsy. J. Pathol. Bacteriol. 95, 441–447.PubMedGoogle Scholar

References

  1. Aherne, W. (1968). A method of determining the cross-sectional area of muscle fibres. J. Neurol. Sci. 7,519–528.PubMedGoogle Scholar
  2. Brooke, M.H. and Engel, W.K. (1969). The histographic analysis of human muscle biopsies with regard to fibre types. Part 1: Adult male and female. Neurology 19, 211–233.Google Scholar
  3. Bundschu, H.D. and Gräser, W. (1973). A new method for analysis of muscle. In: Studies on neuromuscular diseases. K. Kunze and J.E. Desmedt, editors, Karger, Basel, pp. 15–19.Google Scholar
  4. Cornelisse, C.J., Bots, G.T.A.M., Wintzen, A.R., Ploem, J.S. and Broek, K. vd(1980). Real time mor-phometric analysis of type I and type II fibres in cryostat sections of human muscle biopsies. Pathol. Res. Pract. 166, 218–238.PubMedGoogle Scholar
  5. Padykula, H.A. and Hermann, E. (1955). The specificity of the histochemical method for adenosine tri-phosophatase. J. Histochem. Cytochem. 3, 170–195.PubMedGoogle Scholar
  6. Pongratz, D. and Bodechtel, G. (1976). Differentialdiagnose der Erkrankungen der Skeletmuskulatur an Hand von Muskelbiopsien. Sammlung psychiatrischer und neurologischer Einzeldarstellungen. Georg Thieme Verlag, Stuttgart.Google Scholar
  7. Scott, K.W.M. and Hoy, J. (1976). The cross sectional area of diaphragmatic muscle fibres in emphysema, measured by an automated image analysis system. J.Pathol. 20, 121–128.Google Scholar
  8. Suchenwirth, R., Reichenmuller, H.E. and Bundschu, H.D. (1970). Muscle histochemistry in relation to motor conduction velocity in cases of polyneuropathy. In: Muscle diseases, J.N. Walton, N. Canal and G. Scarlato, editors, Excerpta Medica, Amsterdam/Elsevier Inc., New York, pp. 56–60.Google Scholar
  9. Venema, H.W. and Overweg, J. (1974). Analysis of the size and shape of cross-sections of muscle fibres. Med. Biol. Eng., 681–692.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • J. P. A. Baak
  • C. J. L. M. Meijer
  • J. Lindeman
  • J. Oort
  • P. Averback
  • H. Wehner
  • M. Oberholzer
  • H. P. Rohr
  • J. Puittinen
  • Y. Collan
  • C. J. Cornelisse

There are no affiliations available

Personalised recommendations