Skip to main content

The Modelization Method in the Determination of the Structural Characteristics of Some Layer Silicates: Internal Structure of the Layers, Nature and Distribution of the Stacking Faults

  • Chapter

Abstract

We shall now discuss and present the application of the methods described in Chapters 2, 3, and 4 to the study of structures of layer silicates with stacking faults. The examples have been chosen among widely distributed phyllosilicates such as kaolinites, microerystallized micas and smectites since, as is well known, these minerals contain a number of structural defects which have been the subject of numerous studies and discussions over a number of years. Until the advent of the method of diffraction pattern modelization, the perception of these defects was based on rather intuitive structural notions which did not make a truly precise use of the diffractometric characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Hewat AW (1981) Hydrogen atom positions in dickite. Clays Clay Mineral 29:316–319

    Article  Google Scholar 

  • Alcover JF, Gatineau L (1980) Structure de l’espace interlamellaire des vermiculites Ba monocouches. Clay Mineral 15:25–35 and 193–203

    Google Scholar 

  • Bailey SW (1963) Polymorphism of the kaolin minerals. Am Mineral 48:1186–1209

    Google Scholar 

  • Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc, London, pp 1–124

    Google Scholar 

  • Barshad I (1949) The nature of lattice expansion and its relation to hydration in montmorillonite and vermiculite. Am Mineral 34:675–684

    Google Scholar 

  • Ben Brahim J (1985) Contribution à l’étude des systèmes eau-argile par diffraction des rayons X. Structure des couches insérées et mode d’empilement des feuillets dans les hydrates homogènes à une et deux couches d’eau de la beidellite-Na. Thèse de Doctorat, Orléans Univ, Fr

    Google Scholar 

  • Ben Brahim J, Armagan N, Besson G, Tchoubar C (1983) X-ray diffraction studies on the arrangement of water molecules in a smectite: homogeneous two-water-layer Na-beidellite. J Appl Cryst 16:264–269

    Article  Google Scholar 

  • Ben Brahim J, Besson G, Tchoubar C (1984) Etude des profiles des bandes de diffraction X d’une beidellite-Na hydratée à deux couches d’eau. Détermination du mode d’empilement des feuillets et des sites occupés par l’eau. J Appl Cryst 17:179–188

    Article  Google Scholar 

  • Besson G (1980) Structure des smectites dioctaédriques — paramètres conditionnant les fautes d’empilement des feuillets. Thèse de Doctorat, Orléans Univ, Fr

    Google Scholar 

  • Besson G, Tchoubar C (1972) Détermination du groupe de symétrie du feuillet élémentaire de beidellite. CR Acad Sci Paris 275:633–636

    Google Scholar 

  • Besson G, Bookin AS, Dainyak LG, Rautureau M, Tsipursky SI, Tchoubar C, Drits VA (1983 a) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. J Appl Crystallogr 16:374–383

    Article  Google Scholar 

  • Besson G, Glaeser R, Tchoubar C (1983 b) Le césium, révélateur de structure des smectites. Clay Mineral 18:11–19

    Article  Google Scholar 

  • Besson G, de la Calle C, Rautureau M, Tchoubar C, Tsipursky SI, Drits VA (1982) X-Ray and electron diffraction study of the structure of the Garfield nontronite. Proc Int Clay Conf, Bologne, vol 1, pp 29–40

    Google Scholar 

  • Blount AM, Threadgold IM, Bailey SW (1969) Refinement of the crystal structure of nacrite. Clays Clay Mineral 17:185–194

    Article  Google Scholar 

  • Bookin AS, Dainyak LG, Drits VA (1978) Interpretation of the Mössbauer spectra of layer silicates on the basis of the structural modelling. Phys Chem Miner 3:58–59

    Google Scholar 

  • Bookin AS, Dainyak LG, Drits VA (1979) Interpretation of the Mössbauer spectre of Fe3+-containing layer silicate on the basis of structural modelling (in Russian). In: Lapides LI (ed) Cation ordering in structure of minerals. Nauka, Novosibirsk

    Google Scholar 

  • Bookin AS, Drits VA, Plançon A, Tchoubar C (1989a) Stacking faults in kaolin minerals in the light of real structural features. Clay Mineral 37:297–307

    Article  Google Scholar 

  • Bookin AS, Drits VA, Tcherkashin VI, Salyn AL (1989b) Comparison of kaolinite and dickite unit cell parameters (in Russian). Mineral J 11:13–20

    Google Scholar 

  • Boutouzova G Yu, Drits VA, Lisitsina NA, Tsipursky SY (1979) The dynamics of the formation of clay minerals in ore-bearing sediments of the Atlantis II (Red-Sea) (in Russian). Lithol Polesn Iskop 1:20–42

    Google Scholar 

  • Bradley WF, Serratosa JM (1960) A discussion of water content of vermiculite. Clays Clay Mineral 7:260–270

    Article  Google Scholar 

  • Brindley GW (1980) Chap. 2: Order-disorder in clay mineral structures. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc, London, 125–196

    Google Scholar 

  • Brindley GW, Kao Chich-Chun, Harrison JL, Lipsicas M, Raythatha R (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Mineral 34:239–249

    Article  Google Scholar 

  • Brindley GW, Robinson K (1946) Randomness in the structures of kaolinitic clay minerals. Trans Faraday Soc 42B:198–205

    Article  Google Scholar 

  • De la Calle C (1977) Structure des vermiculites. Facteurs conditionnant les mouvements des feuillets. Thèse de Doctorat, Univ Paris IV, Fr

    Google Scholar 

  • Cardille CM, Johnson JH, Dickson DPE (1986) Magnetic ordering at 4.2 and 1.3 K in nontronites of different iron contents: a 57Fe Mössbauer spectroscopic study. Clays Clay Mineral 34:233–238

    Article  Google Scholar 

  • Dainyak LG (1980) The interpretation of the Mössbauer spectra of some Fe3+-containing silicates on the basis of structural modelling. Ph D Thesis, Geol Inst Academy of Sci, Moscow

    Google Scholar 

  • Deluca S, Slaughter M (1985) Existence of multiple kaolinite phases and their relationship to disorder in kaolin minerals. Amer Miner 70:149–158

    Google Scholar 

  • Donnay G, Donnay JDH, Takeda H (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimension. Acta Cryst 17:1374–1377

    Article  Google Scholar 

  • Drits VA (1969) Some general remarks on the structure of trioctahedral micas. Proc Intern Clay Conf, Tokyo, 1:51–59

    Google Scholar 

  • Drits VA (1971) Crystallochemical features of trioctahedral mica (in Russian). In: Kossovskaya AG (ed) Epigenesis and mineral indicators. Nauka, Moscow, pp 96–110

    Google Scholar 

  • Drits VA (1975) Structure and crystallochemical features of layer silicates (in Russian). In: Kossovskaya AG (ed) Crystallochemistry of minerals and geological problems. Nauka, Moscow, pp 35–52

    Google Scholar 

  • Drits VA (1987) Mixed-layer minerals: diffraction methods and structural features. Proc Intern Clay Conf, Denver, 1:33–45

    Google Scholar 

  • Drits VA, Kashaev A (1960) An X-ray study of a kaolinite single crystal (in Russian). Kristallografia 5:207–210

    Google Scholar 

  • Drits VA, Kossovskaya AG (1980) Geological crystal chemistry of rock-forming dioctahedral smectites (in Russian). Lithol Polesn Iskop 1:84–112

    Google Scholar 

  • Giese RF (1982) Theoretical studies of the kaolin minerals: electrostatic calculations. Bull Mineral 105:417–424

    Google Scholar 

  • Glaeser R, Méring J (1954) Isothermes d’hydratation des montmorillonites biioniques (Na, Ca). Clay Miner Bull 2:188–190

    Article  Google Scholar 

  • Goodman BA, Russell JD, Fraser AR, Woodhams FWD (1976) A Mössbauer and LR. spectroscopic study of the structure of nontronite. Clays Clay Mineral 24:53–59

    Article  Google Scholar 

  • Goodyear B, Duffin MA (1961) An X-ray examination of an exceptionally well crystallized kaolinite. Mineral Mag 32:902–907

    Article  Google Scholar 

  • Grim R (1968) Clay mineralogy. McGraw-Hill Book Company, New York (ed), 506 pp

    Google Scholar 

  • Güven N (1971) The crystal structure of 2M-phengite and 2M-muscovite. Z Krist 134:487–490

    Article  Google Scholar 

  • Güven N, Pease RW, Murr LE (1977) Fine structure in the selected area diffraction patterns of beidellite. Clay Mineral 12:67–74

    Article  Google Scholar 

  • Heller-Kallai L, Rozenson I (1980) Dehydroxylation of dioctahedral phyllosilicates. Clays Clay Miner 28:355–368

    Article  Google Scholar 

  • Joswig W, Drits VA (1986) The orientation of the hydroxyl groups in dickite by X-ray diffraction. N Jb Miner Mh 1:19–22

    Google Scholar 

  • Kameneva M Yu (1985) Crystallochemical features of glauconite minerals. Ph D Inst Geology and Geophysics. Academy of Sci of USSR, Novosibirsk

    Google Scholar 

  • Mamy J, Gaultier JP (1976) Les phénomènes de diffraction des rayonnements X et électroniques par les réseaux atomiques. Application à l’étude de l’ordre cristallin dans les minéraux argileux. Evolution structurelle de la montmorillonite associée au phénomène de fixation irréversible du potassium. Anales Agro 27:1–16

    Google Scholar 

  • Mathieson AM, Walker GF (1954) Crystal structure of magnesium vermiculite. Amer Mineral 39:231–235

    Google Scholar 

  • Méring J, Glaeser R (1954) Sur le rôle de la valeur des cations échangeables dans la montmorillonite. Bull Soc Fr Miner Crist 77:519–522

    Google Scholar 

  • Méring J, Oberlin A (1971) Chap 6: The smectites. In: Gard JA (ed) The electron-optical investigation of clays. Mineral Soc, London, pp 193–229

    Google Scholar 

  • Mitra GB, Bhattacherjee S (1970) X-ray diffraction studies on the transformation of kaolinite into metakaolin: study of layer shift. Acta Cryst B26:2124–2128

    Google Scholar 

  • Murray HH (1954) Structural variations of some kaolinites in relation to dehydrated halloysite. Amer Mineral 39:97–108

    Google Scholar 

  • Newnham RE (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals. Miner Mag 32:683–704

    Article  Google Scholar 

  • Nicolaeva IV (1977) Glauconite minerals in sediment formations. In: Yanshin AL (ed) Sediment formations (in Russian). Nauka, Moscow, 321 pp

    Google Scholar 

  • Noble FR (1971) A study of disorder in kaolinite. Clay Mineral 9:71–80

    Article  Google Scholar 

  • Odom IE (1984) Glauconite and celadonite minerals. In: Bailey SW (ed) Review in Mineralogy, Mineral Soc, London, 13:545–572

    Google Scholar 

  • Osthaus BB (1954) Chemical determination of tetrahedral ions in nontronite and montmorillonite. Clays Clay Mineral, NRC-NAS Pub. no 327:404–416

    Google Scholar 

  • Plançon A, Giese RF, Snyder R, Bookin AS, Drits VA (1989 a) Stacking faults in the kaolin minerals. I. General review. Clays Clay Mineral 37(3):203–210

    Article  Google Scholar 

  • Plançon A, Giese RF, Snyder R (1989b) The Hinckley index for kaolinite. Clays Clay Mineral 24:249–260

    Google Scholar 

  • Plançon A, Tchoubar C (1975) Etude des fautes d’empilement dans les kaolinites partiellement désordonnées. I. Modèle ne comportant que des fautes par translation. J Appl Cryst 8:582–588

    Article  Google Scholar 

  • Plançon A, Tchoubar C (1976) Etude des fautes d’empilement dans les kaolinites partiellement désordonées. II. Modèle comportant des fautes par rotation. J Appl Cryst 9:279–285

    Article  Google Scholar 

  • Plançon A, Tchoubar C (1977 a) Determination of structural defects in phyllosilicates by X-ray powder diffraction. I. Principle of calculation of the diffraction phenomena. Clays Clay Mineral 25:430–435

    Article  Google Scholar 

  • Plançon A, Tchoubar C (1977b) Determination of structural defects in phyllosilicates by X-ray diffraction. II. Nature and proportion of defects in natural kaolinites. Clays Clay Miner 25:436–450

    Article  Google Scholar 

  • Pons CH, Tchoubar C, Tchoubar D (1980) Organisation des molécules d’eau à la surface des feuillets dans un gel de montmorillonite-Na. Bull Mineral 103:452–456

    Google Scholar 

  • Radoslovich EW, Burnham CW (1964) Crystal structure of coexisting muscovite 2M1 and paragonite 2M1. Carnegie Inst Year Book 63:232–234

    Google Scholar 

  • Radolovich EW, Norrish K (1964) The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations. Amer Mineral 47:599–616

    Google Scholar 

  • Rozenson I, Heller-Kallai L (1977) Mössbauer spectra of dioctahedral smectites. Clays Clay Mineral 25:94–101

    Article  Google Scholar 

  • Russel JD, Goodman BA, Fraser AR (1979) Infra-red and Mössbauer studies of reduced non-tronites. Clays Clay Mineral 27:63–71

    Article  Google Scholar 

  • Sakharov BA, Besson G, Kameneva M Yu, Smolyar BB, Drits VA (1987) Studies of stacking faults nature in the structure of Fe3+-containing mica by X-ray analysis. In: Book of summaries; Proc of the 6th meeting of the Europ Clay Group, Sevilla, Spain

    Google Scholar 

  • Sakharov BA, Besson G, Kameneva M Yu, Smolyar BB, Drits VA (1989) Studies of stacking faults in glauconite structures. Clay Mienral (submitted)

    Google Scholar 

  • Samotoin ND (1966) Study of surfaces of kaolinite and dickite monocrystals by decoration method (in Russian). Zapisky Usesojusn Miner Obschest 95:390–399

    Google Scholar 

  • Samotoin ND, Chekin SS, Finko VI (1980) Spiral growth and polytypism of kaolin group minerals. Proc VIth Intern Congr Crystal Growth, Moscow, 4:230–236

    Google Scholar 

  • Shirozu H, Bailey SW (1966) Chlorite polytypism: III. Crystal structure of an orthohexagonal iron chlorite. Amer Mineral 51:1124–1143

    Google Scholar 

  • Suitch PR, Young RA (1983) Atom position in highly ordered kaolinite. Clays Clay Miner 31:357–366

    Article  Google Scholar 

  • Tchoubar C, Plançon A, Ben Brahim J, Clinard C, Sow C (1982) Caractéristiques structurales des kaolinites désordonnées. Bull Mineral 105:477–491

    Google Scholar 

  • Tsipursky SI, Drits VA (1977) Effectiveness of the electronometric method of measuring the intensities at the electron diffraction structural studies (in Russian). Izv Akad Nauk SSSR, Phys Ser, 2263–2271

    Google Scholar 

  • Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioc-tahedral smectites studied by oblique texture electron diffraction. Clay Miner 19:177–193

    Article  Google Scholar 

  • Tsipursky SI, Drits VA, Chekin SS (1978) Revealing of the structural ordering of nontronites by oblique texture electron diffraction (in Russian). Izv Akad Nauk SSSR, Ser Geol 10:105–113

    Google Scholar 

  • Zvyagin BB (1960) Electrodiffraction determination of the structure of kaolinite (in Russian). Soviet Phys Crystallogr 5:32–42

    Google Scholar 

  • Zvyagin BB (1967) Electron diffraction analysis of clay mineral structure (translated from Russian). Plenum Press, New York, 364 pp

    Google Scholar 

  • Zvyagin BB, Vrublevskaya ZV, Zhoukhlistov AP, Sidorenko SV, Fedotov AF (1979) In: Drits VA (ed) High voltage electron diffraction study of layer minerals. Nauka, Moscow, 215 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drits, V.A., Tchoubar, C. (1990). The Modelization Method in the Determination of the Structural Characteristics of Some Layer Silicates: Internal Structure of the Layers, Nature and Distribution of the Stacking Faults. In: X-Ray Diffraction by Disordered Lamellar Structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74802-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74802-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74804-2

  • Online ISBN: 978-3-642-74802-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics