The Modelization Method in the Determination of the Structural Characteristics of Some Layer Silicates: Internal Structure of the Layers, Nature and Distribution of the Stacking Faults

  • Victor A. Drits
  • Cyril Tchoubar

Abstract

We shall now discuss and present the application of the methods described in Chapters 2, 3, and 4 to the study of structures of layer silicates with stacking faults. The examples have been chosen among widely distributed phyllosilicates such as kaolinites, microerystallized micas and smectites since, as is well known, these minerals contain a number of structural defects which have been the subject of numerous studies and discussions over a number of years. Until the advent of the method of diffraction pattern modelization, the perception of these defects was based on rather intuitive structural notions which did not make a truly precise use of the diffractometric characteristics.

Keywords

Clay Hydrate Hydroxyl Silicate Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JM, Hewat AW (1981) Hydrogen atom positions in dickite. Clays Clay Mineral 29:316–319CrossRefGoogle Scholar
  2. Alcover JF, Gatineau L (1980) Structure de l’espace interlamellaire des vermiculites Ba monocouches. Clay Mineral 15:25–35 and 193–203Google Scholar
  3. Bailey SW (1963) Polymorphism of the kaolin minerals. Am Mineral 48:1186–1209Google Scholar
  4. Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc, London, pp 1–124Google Scholar
  5. Barshad I (1949) The nature of lattice expansion and its relation to hydration in montmorillonite and vermiculite. Am Mineral 34:675–684Google Scholar
  6. Ben Brahim J (1985) Contribution à l’étude des systèmes eau-argile par diffraction des rayons X. Structure des couches insérées et mode d’empilement des feuillets dans les hydrates homogènes à une et deux couches d’eau de la beidellite-Na. Thèse de Doctorat, Orléans Univ, FrGoogle Scholar
  7. Ben Brahim J, Armagan N, Besson G, Tchoubar C (1983) X-ray diffraction studies on the arrangement of water molecules in a smectite: homogeneous two-water-layer Na-beidellite. J Appl Cryst 16:264–269CrossRefGoogle Scholar
  8. Ben Brahim J, Besson G, Tchoubar C (1984) Etude des profiles des bandes de diffraction X d’une beidellite-Na hydratée à deux couches d’eau. Détermination du mode d’empilement des feuillets et des sites occupés par l’eau. J Appl Cryst 17:179–188CrossRefGoogle Scholar
  9. Besson G (1980) Structure des smectites dioctaédriques — paramètres conditionnant les fautes d’empilement des feuillets. Thèse de Doctorat, Orléans Univ, FrGoogle Scholar
  10. Besson G, Tchoubar C (1972) Détermination du groupe de symétrie du feuillet élémentaire de beidellite. CR Acad Sci Paris 275:633–636Google Scholar
  11. Besson G, Bookin AS, Dainyak LG, Rautureau M, Tsipursky SI, Tchoubar C, Drits VA (1983 a) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. J Appl Crystallogr 16:374–383CrossRefGoogle Scholar
  12. Besson G, Glaeser R, Tchoubar C (1983 b) Le césium, révélateur de structure des smectites. Clay Mineral 18:11–19CrossRefGoogle Scholar
  13. Besson G, de la Calle C, Rautureau M, Tchoubar C, Tsipursky SI, Drits VA (1982) X-Ray and electron diffraction study of the structure of the Garfield nontronite. Proc Int Clay Conf, Bologne, vol 1, pp 29–40Google Scholar
  14. Blount AM, Threadgold IM, Bailey SW (1969) Refinement of the crystal structure of nacrite. Clays Clay Mineral 17:185–194CrossRefGoogle Scholar
  15. Bookin AS, Dainyak LG, Drits VA (1978) Interpretation of the Mössbauer spectra of layer silicates on the basis of the structural modelling. Phys Chem Miner 3:58–59Google Scholar
  16. Bookin AS, Dainyak LG, Drits VA (1979) Interpretation of the Mössbauer spectre of Fe3+-containing layer silicate on the basis of structural modelling (in Russian). In: Lapides LI (ed) Cation ordering in structure of minerals. Nauka, NovosibirskGoogle Scholar
  17. Bookin AS, Drits VA, Plançon A, Tchoubar C (1989a) Stacking faults in kaolin minerals in the light of real structural features. Clay Mineral 37:297–307CrossRefGoogle Scholar
  18. Bookin AS, Drits VA, Tcherkashin VI, Salyn AL (1989b) Comparison of kaolinite and dickite unit cell parameters (in Russian). Mineral J 11:13–20Google Scholar
  19. Boutouzova G Yu, Drits VA, Lisitsina NA, Tsipursky SY (1979) The dynamics of the formation of clay minerals in ore-bearing sediments of the Atlantis II (Red-Sea) (in Russian). Lithol Polesn Iskop 1:20–42Google Scholar
  20. Bradley WF, Serratosa JM (1960) A discussion of water content of vermiculite. Clays Clay Mineral 7:260–270CrossRefGoogle Scholar
  21. Brindley GW (1980) Chap. 2: Order-disorder in clay mineral structures. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc, London, 125–196Google Scholar
  22. Brindley GW, Kao Chich-Chun, Harrison JL, Lipsicas M, Raythatha R (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Mineral 34:239–249CrossRefGoogle Scholar
  23. Brindley GW, Robinson K (1946) Randomness in the structures of kaolinitic clay minerals. Trans Faraday Soc 42B:198–205CrossRefGoogle Scholar
  24. De la Calle C (1977) Structure des vermiculites. Facteurs conditionnant les mouvements des feuillets. Thèse de Doctorat, Univ Paris IV, FrGoogle Scholar
  25. Cardille CM, Johnson JH, Dickson DPE (1986) Magnetic ordering at 4.2 and 1.3 K in nontronites of different iron contents: a 57Fe Mössbauer spectroscopic study. Clays Clay Mineral 34:233–238CrossRefGoogle Scholar
  26. Dainyak LG (1980) The interpretation of the Mössbauer spectra of some Fe3+-containing silicates on the basis of structural modelling. Ph D Thesis, Geol Inst Academy of Sci, MoscowGoogle Scholar
  27. Deluca S, Slaughter M (1985) Existence of multiple kaolinite phases and their relationship to disorder in kaolin minerals. Amer Miner 70:149–158Google Scholar
  28. Donnay G, Donnay JDH, Takeda H (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimension. Acta Cryst 17:1374–1377CrossRefGoogle Scholar
  29. Drits VA (1969) Some general remarks on the structure of trioctahedral micas. Proc Intern Clay Conf, Tokyo, 1:51–59Google Scholar
  30. Drits VA (1971) Crystallochemical features of trioctahedral mica (in Russian). In: Kossovskaya AG (ed) Epigenesis and mineral indicators. Nauka, Moscow, pp 96–110Google Scholar
  31. Drits VA (1975) Structure and crystallochemical features of layer silicates (in Russian). In: Kossovskaya AG (ed) Crystallochemistry of minerals and geological problems. Nauka, Moscow, pp 35–52Google Scholar
  32. Drits VA (1987) Mixed-layer minerals: diffraction methods and structural features. Proc Intern Clay Conf, Denver, 1:33–45Google Scholar
  33. Drits VA, Kashaev A (1960) An X-ray study of a kaolinite single crystal (in Russian). Kristallografia 5:207–210Google Scholar
  34. Drits VA, Kossovskaya AG (1980) Geological crystal chemistry of rock-forming dioctahedral smectites (in Russian). Lithol Polesn Iskop 1:84–112Google Scholar
  35. Giese RF (1982) Theoretical studies of the kaolin minerals: electrostatic calculations. Bull Mineral 105:417–424Google Scholar
  36. Glaeser R, Méring J (1954) Isothermes d’hydratation des montmorillonites biioniques (Na, Ca). Clay Miner Bull 2:188–190CrossRefGoogle Scholar
  37. Goodman BA, Russell JD, Fraser AR, Woodhams FWD (1976) A Mössbauer and LR. spectroscopic study of the structure of nontronite. Clays Clay Mineral 24:53–59CrossRefGoogle Scholar
  38. Goodyear B, Duffin MA (1961) An X-ray examination of an exceptionally well crystallized kaolinite. Mineral Mag 32:902–907CrossRefGoogle Scholar
  39. Grim R (1968) Clay mineralogy. McGraw-Hill Book Company, New York (ed), 506 ppGoogle Scholar
  40. Güven N (1971) The crystal structure of 2M-phengite and 2M-muscovite. Z Krist 134:487–490CrossRefGoogle Scholar
  41. Güven N, Pease RW, Murr LE (1977) Fine structure in the selected area diffraction patterns of beidellite. Clay Mineral 12:67–74CrossRefGoogle Scholar
  42. Heller-Kallai L, Rozenson I (1980) Dehydroxylation of dioctahedral phyllosilicates. Clays Clay Miner 28:355–368CrossRefGoogle Scholar
  43. Joswig W, Drits VA (1986) The orientation of the hydroxyl groups in dickite by X-ray diffraction. N Jb Miner Mh 1:19–22Google Scholar
  44. Kameneva M Yu (1985) Crystallochemical features of glauconite minerals. Ph D Inst Geology and Geophysics. Academy of Sci of USSR, NovosibirskGoogle Scholar
  45. Mamy J, Gaultier JP (1976) Les phénomènes de diffraction des rayonnements X et électroniques par les réseaux atomiques. Application à l’étude de l’ordre cristallin dans les minéraux argileux. Evolution structurelle de la montmorillonite associée au phénomène de fixation irréversible du potassium. Anales Agro 27:1–16Google Scholar
  46. Mathieson AM, Walker GF (1954) Crystal structure of magnesium vermiculite. Amer Mineral 39:231–235Google Scholar
  47. Méring J, Glaeser R (1954) Sur le rôle de la valeur des cations échangeables dans la montmorillonite. Bull Soc Fr Miner Crist 77:519–522Google Scholar
  48. Méring J, Oberlin A (1971) Chap 6: The smectites. In: Gard JA (ed) The electron-optical investigation of clays. Mineral Soc, London, pp 193–229Google Scholar
  49. Mitra GB, Bhattacherjee S (1970) X-ray diffraction studies on the transformation of kaolinite into metakaolin: study of layer shift. Acta Cryst B26:2124–2128Google Scholar
  50. Murray HH (1954) Structural variations of some kaolinites in relation to dehydrated halloysite. Amer Mineral 39:97–108Google Scholar
  51. Newnham RE (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals. Miner Mag 32:683–704CrossRefGoogle Scholar
  52. Nicolaeva IV (1977) Glauconite minerals in sediment formations. In: Yanshin AL (ed) Sediment formations (in Russian). Nauka, Moscow, 321 ppGoogle Scholar
  53. Noble FR (1971) A study of disorder in kaolinite. Clay Mineral 9:71–80CrossRefGoogle Scholar
  54. Odom IE (1984) Glauconite and celadonite minerals. In: Bailey SW (ed) Review in Mineralogy, Mineral Soc, London, 13:545–572Google Scholar
  55. Osthaus BB (1954) Chemical determination of tetrahedral ions in nontronite and montmorillonite. Clays Clay Mineral, NRC-NAS Pub. no 327:404–416Google Scholar
  56. Plançon A, Giese RF, Snyder R, Bookin AS, Drits VA (1989 a) Stacking faults in the kaolin minerals. I. General review. Clays Clay Mineral 37(3):203–210CrossRefGoogle Scholar
  57. Plançon A, Giese RF, Snyder R (1989b) The Hinckley index for kaolinite. Clays Clay Mineral 24:249–260Google Scholar
  58. Plançon A, Tchoubar C (1975) Etude des fautes d’empilement dans les kaolinites partiellement désordonnées. I. Modèle ne comportant que des fautes par translation. J Appl Cryst 8:582–588CrossRefGoogle Scholar
  59. Plançon A, Tchoubar C (1976) Etude des fautes d’empilement dans les kaolinites partiellement désordonées. II. Modèle comportant des fautes par rotation. J Appl Cryst 9:279–285CrossRefGoogle Scholar
  60. Plançon A, Tchoubar C (1977 a) Determination of structural defects in phyllosilicates by X-ray powder diffraction. I. Principle of calculation of the diffraction phenomena. Clays Clay Mineral 25:430–435CrossRefGoogle Scholar
  61. Plançon A, Tchoubar C (1977b) Determination of structural defects in phyllosilicates by X-ray diffraction. II. Nature and proportion of defects in natural kaolinites. Clays Clay Miner 25:436–450CrossRefGoogle Scholar
  62. Pons CH, Tchoubar C, Tchoubar D (1980) Organisation des molécules d’eau à la surface des feuillets dans un gel de montmorillonite-Na. Bull Mineral 103:452–456Google Scholar
  63. Radoslovich EW, Burnham CW (1964) Crystal structure of coexisting muscovite 2M1 and paragonite 2M1. Carnegie Inst Year Book 63:232–234Google Scholar
  64. Radolovich EW, Norrish K (1964) The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations. Amer Mineral 47:599–616Google Scholar
  65. Rozenson I, Heller-Kallai L (1977) Mössbauer spectra of dioctahedral smectites. Clays Clay Mineral 25:94–101CrossRefGoogle Scholar
  66. Russel JD, Goodman BA, Fraser AR (1979) Infra-red and Mössbauer studies of reduced non-tronites. Clays Clay Mineral 27:63–71CrossRefGoogle Scholar
  67. Sakharov BA, Besson G, Kameneva M Yu, Smolyar BB, Drits VA (1987) Studies of stacking faults nature in the structure of Fe3+-containing mica by X-ray analysis. In: Book of summaries; Proc of the 6th meeting of the Europ Clay Group, Sevilla, SpainGoogle Scholar
  68. Sakharov BA, Besson G, Kameneva M Yu, Smolyar BB, Drits VA (1989) Studies of stacking faults in glauconite structures. Clay Mienral (submitted)Google Scholar
  69. Samotoin ND (1966) Study of surfaces of kaolinite and dickite monocrystals by decoration method (in Russian). Zapisky Usesojusn Miner Obschest 95:390–399Google Scholar
  70. Samotoin ND, Chekin SS, Finko VI (1980) Spiral growth and polytypism of kaolin group minerals. Proc VIth Intern Congr Crystal Growth, Moscow, 4:230–236Google Scholar
  71. Shirozu H, Bailey SW (1966) Chlorite polytypism: III. Crystal structure of an orthohexagonal iron chlorite. Amer Mineral 51:1124–1143Google Scholar
  72. Suitch PR, Young RA (1983) Atom position in highly ordered kaolinite. Clays Clay Miner 31:357–366CrossRefGoogle Scholar
  73. Tchoubar C, Plançon A, Ben Brahim J, Clinard C, Sow C (1982) Caractéristiques structurales des kaolinites désordonnées. Bull Mineral 105:477–491Google Scholar
  74. Tsipursky SI, Drits VA (1977) Effectiveness of the electronometric method of measuring the intensities at the electron diffraction structural studies (in Russian). Izv Akad Nauk SSSR, Phys Ser, 2263–2271Google Scholar
  75. Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioc-tahedral smectites studied by oblique texture electron diffraction. Clay Miner 19:177–193CrossRefGoogle Scholar
  76. Tsipursky SI, Drits VA, Chekin SS (1978) Revealing of the structural ordering of nontronites by oblique texture electron diffraction (in Russian). Izv Akad Nauk SSSR, Ser Geol 10:105–113Google Scholar
  77. Zvyagin BB (1960) Electrodiffraction determination of the structure of kaolinite (in Russian). Soviet Phys Crystallogr 5:32–42Google Scholar
  78. Zvyagin BB (1967) Electron diffraction analysis of clay mineral structure (translated from Russian). Plenum Press, New York, 364 ppGoogle Scholar
  79. Zvyagin BB, Vrublevskaya ZV, Zhoukhlistov AP, Sidorenko SV, Fedotov AF (1979) In: Drits VA (ed) High voltage electron diffraction study of layer minerals. Nauka, Moscow, 215 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Victor A. Drits
    • 1
  • Cyril Tchoubar
    • 2
  1. 1.Geological InstituteAcademy of SciencesMoscowUSSR
  2. 2.Laboratoire de Cristallographie (associé au CNRS)Université d’OrléansOrléans CedexFrance

Personalised recommendations