Overall Description of Imperfect Lamellar Crystals

  • Victor A. Drits
  • Cyril Tchoubar

Abstract

Periodicity is the characteristic common to all crystallized objects; it is determined by the position in space of all the elements which constitute the crystal: atoms, ions, molecules, etc. The distribution of these elements in the volume of the crystal constitutes the crystal structure.

Keywords

Clay Graphite Sulfide Hydrated Hydroxyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amouric M, Baronnet A, Finck C (1978) Polytypisme et désordre dans les micas dioctaédriques synthétiques. Etude par imagerie de réseau. Mat Res Bull 13:627–634CrossRefGoogle Scholar
  2. Appelo CAY (1978) Layer deformation and crystal energy of micas and related minerals. I. Structural models for 1M and 2M1 polytypes. Am Mineral 63:782–792Google Scholar
  3. Bailey SW (1966) Status of clay mineral structures. Clays Clay Mineral 26:3–21Google Scholar
  4. Bailey SW (1980) Structure of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc, London, pp 1–124Google Scholar
  5. Bailey SW (1984) Crystal chemistry of the true micas. In: Bailey reviews in mineralogy, vol 13. Micas, 1–12. Mineral Soc Am, Chelsea, Mich, USAGoogle Scholar
  6. Bak P (1982) Commensurate phases, incommensurate phases and the devil’s staircase. Rep Progr Phys 45:587–629CrossRefGoogle Scholar
  7. Ben Brahim J, Armagan N, Besson G, Tchoubar C (1983) X-ray diffraction studies on the arrangement of water molecules in a smectite. I. Homogeneous two-water-layer Na-beidellite. J Appl Crystallogr 16:264–269CrossRefGoogle Scholar
  8. Ben Brahim J, Armagan N, Besson G, Tchoubar C (1986) Méthodes diffractométriques de caractérisation des états d’hydratation des smectites. Stabilité relative des couches d’eau insérées. Clay Mineral 21:111–124CrossRefGoogle Scholar
  9. Blatter CL, Robertson HE, Thomson GR (1973) Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shales, Montana. Clays Clay Mineral 21:207–212CrossRefGoogle Scholar
  10. Bookin AS, Smoliar BB (1985) Simulation of bond lengths in coordination polyhedra of 2:1 layer silicates. In: Proc 5th Meet European clay groups, Prague 1983. Charles Univ Press, Prague, pp 51–56Google Scholar
  11. Bouraoui A, Méring J (1964) Diamétre des couches atomiques élémentaires dans les carbones traités entre 1000°C et 2000°C. Carbon 1:465–469CrossRefGoogle Scholar
  12. Chukhrov FV, Gorshkov AI, Vitovskaya ES, Drits VA (1980) Crystallochemical nature of Co-Ni asbolane. Isv Akad Nauk SSSR Geol Ser 6:75–81 (in Russian)Google Scholar
  13. Chukhrov FV, Gorshkov AI, Drits VA (1982) New structural variant of asbolane. Isv Akad Nauk SSSR Geol Ser 6:69–77 (in Russian)Google Scholar
  14. Chukhrov FV, Gorshkov AI, Drits VA, Shterenberg BE, Sakharov BA (1983) Mixed-layer minerals asbolane-buserites. Isv Akad Nauk SSSR Geol Ser 5:91–100 (in Russian)Google Scholar
  15. Clinard C, Tchoubar D, Tchoubar C, Rousseaux F, Fuselier H (1983) Structure, par diffraction des électrons et des rayons X, de la phase β de l’acide nitrique inséré dans le pyrographite. Synthetic Metals 7–1:333–336CrossRefGoogle Scholar
  16. Drits VA (1971) Crystallochemical features of trioctahedral micas. In: Epygenis and its mineral indicators. Ed.: AG Kossovskaya, Nauka, Moscow, pp 96–110 (in Russian)Google Scholar
  17. Drits VA (1975) Structural and crystallochemical features of layer silicates. In: Crystal chemistry of minerals and geological problems. Ed. AG Kossovskaya, Nauka, Moscow, pp. 35–52 (in Russian)Google Scholar
  18. Drits VA (1987) Electron diffraction and high resolution electron microscopy of mineral structures. Springer-Verlag, Berlin Heidelberg New York, 304 ppCrossRefGoogle Scholar
  19. Drits VA, Sakharov BA (1976) X-ray structure analysis of interstratified minerals. Nauka, Moscow, 255 pp (in Russian)Google Scholar
  20. Drits VA, Alexandrova VA, Smolin PP (1975) Refinement of the crystal structure of talc. In: Crystal chemistry and geological problems. Ed: AG Kossovskaya, Nauka, Moscow, pp 99–105 (in Russian)Google Scholar
  21. Drits VA, Sakharov BA, Plançon A, Ben Brahim J (1984) Distribution of layer types in mixed layer crystals of homogeneous composition. Krystallographia 29:350–355Google Scholar
  22. Gard JA (1971) The electron-optical investigation of clays. Mineral Soc, London, 383 ppGoogle Scholar
  23. Gay R, Gasparoux H (1965) Explication des diagrammes de diffraction des rayons X par les carbones graphités. In: Pacault A (ed) Les carbones, vol 1. Masson, Paris, pp 62–128Google Scholar
  24. Grim RE (1968) Clay mineralogy. McGraw-Hill, New York, 596 ppGoogle Scholar
  25. Guinier A (1964) Théorie et technique de la radiocristallographie. Chap. 13: Diffraction per les réseaux cristallins imparfaits. Dunod, Paris, pp 490–636Google Scholar
  26. Hérold A (1979) Crystallochemistry of carbon intercalation components. In: Lévy F (ed) Physics and chemistry of materials with layered structures, vol 6. Reidel, Dordrecht, pp 323–421Google Scholar
  27. Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1965) Electron microscopy of thin crystals. Butterworths, London, 549 ppGoogle Scholar
  28. Jagodzinski H (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluß auf die Röntgen-interferenzen. I. Berechnung des Fehlordnungsgrades aus den Röntgenintensitäten. Acta Crystallogr 2:201–207CrossRefGoogle Scholar
  29. Kodama H, Gatineau L, Méring J (1971) An analysis of X-ray diffraction line profiles of microcrystalline muscovites. Clays Clay Mineral 19:405–413CrossRefGoogle Scholar
  30. Lagrange P, Guérard D, Hérold A (1978) Sur la structure du composé KC8. Ann Chim Fr 3:143–159Google Scholar
  31. Maire J, Méring J (1970) Graphitization of soft carbons. In: Walker PP (ed) Chemistry and physics of carbon, vol 6. Dekker, New York, pp 125–189Google Scholar
  32. Mélin J, Hérold A (1975) Thermal stability and structure of graphite-antimony pentachloride compounds. Carbon 13:357–362CrossRefGoogle Scholar
  33. Méring J, Longuet-Escart J (1954) Adaptation des méthodes de diffraction à l’étude de l’organisation des corps divisés. J Chim Phys 51:416–424Google Scholar
  34. Novikov VM, Berkhin SI, Gorshkov AI, Drits VA, Organova NI, Rudnitskaya ES (1973) Interstratification chlorite-swelling chlorite. Isv Akad Nauk SSSR Geol Ser 8:38–47 (in Russian)Google Scholar
  35. Organova NI, Drits VA, Dmitrik AL (1972) Structural study of tochilinite. I. Isometric varieties. Krystallographia 17–4:761–767 (in Russian)Google Scholar
  36. Organova NI, Drits VA, Dmitrik AL (1973) One-layer valeriite. Dokl Akad Nauk 212:192–195Google Scholar
  37. Plançon A, Tchoubar C (1975) Etude des fautes d’empilement dans les kaolinites partiellement désordonnées. I. Modèle ne comportant que des fautes par translation. J Appl Crystallogr 8:582–588CrossRefGoogle Scholar
  38. Pynn R (1979) Incommensurable structures. Nature (London) 281:433–437CrossRefGoogle Scholar
  39. Reynolds RC (1980) Interstratified clay minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc, London pp 229–304Google Scholar
  40. Rothbauer R (1971) Untersuchung eines 2M1-Muskovits mit Neutronenstrahlen. Neues Jahrb Mineral Monatsh 44:143–154Google Scholar
  41. Rousseaux F, Vangelisti R, Plançon A, Tchoubar D (1982) Etude quantitative, par diffraction des rayons X, des corrélations entre couches dans les composés graphite-chlorures ferriques de 1er et 2ème stades. Rev Chim Mineral 19:572–587Google Scholar
  42. Sanz J, Serratosa JM (1983) 29Si and 27A1 high-resolution MAS-NMR spectra of phyllosilicates. J Am Chem Soc 106:4790–4793CrossRefGoogle Scholar
  43. Smith JV, Yoder HS (1956) Experimental and theoretical studies of the mica-polymorphs. Mineral Mag 31:209–235CrossRefGoogle Scholar
  44. Solin SA (1982) The nature and structural properties of graphite intercalation compounds. Adv Chem Phys 49:455–532CrossRefGoogle Scholar
  45. Tchoubar C (1984) X-ray studies of defects in clays. Philos Trans R Soc London Ser A311: 259–269CrossRefGoogle Scholar
  46. Tchoubar C (1986) Quantitative determination of the fine structural features in clays, by modelling of the X-ray diffraction patterns. Mineral Petrogr Acta 29-A:35–54Google Scholar
  47. Terner S, Bucek P (1979) Manganese oxide tunnel structures and their under growths. Science 203:456–458CrossRefGoogle Scholar
  48. Terner S, Bucek P (1981) Todorokite: a new family of naturally occurring manganese oxide. Science 212:1024–1027CrossRefGoogle Scholar
  49. Veblen DR, Bucek P, Burnham CW (1977) Asbestiform chain silicates: new minerals and structural groups. Science 198:359–365CrossRefGoogle Scholar
  50. Zvyagin BB (1967) Electron-diffraction analysis of clay mineral structures. Engl Transl. Plenum, New York (1967) 364 pp (Orig 1964 in Russian, Nauka, Moscow)Google Scholar
  51. Zvyagin BB, Vrublevskaya ZV, Zhukhlistov AP, Sidorenko OV, Soboleva SV, Fedotov AF (1979) High voltage electron diffraction for the study of layer minerals. Nauka, Moscow, 224 pp (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Victor A. Drits
    • 1
  • Cyril Tchoubar
    • 2
  1. 1.Geological InstituteAcademy of SciencesMoscowUSSR
  2. 2.Laboratoire de Cristallographie (associé au CNRS)Université d’OrléansOrléans CedexFrance

Personalised recommendations