Evolution Equations Compatible with Quasilinear Hyperbolic Models Involving Source-Like Terms

  • D. Fusco
  • N. Manganaro
Part of the Research Reports in Physics book series (RESREPORTS)


An asymptotic analysis is developed to deduce the evolution equations compatible with hyperbolic dissipative systems of first order. These equations involve also higher order nonlinear terms.


Wave Motion Hyperbolic Model Progressive Wave Bubbly Liquid Quasilinear Hyperbolic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Boillat G., Ondes Asymptotiques Non Lineaires, Ann. Mat. Pura Appl., 61, 31–44, 1976.MathSciNetGoogle Scholar
  2. [2]
    Jeffrey A., Quasilinear Hyperbolic Systems and Waves, Research Notes in Math. 5, Pitman Publ., London 1976.Google Scholar
  3. [3]
    Fusco D., Some Comments on Wave Motions Described by Non-Homogeneous Quasilinear First Order Hyperbolic Systems, Meccanica, 17, 128–137, 1982.MATHCrossRefGoogle Scholar
  4. [4]
    Fusco D. and Manganaro N., Nonlinear Wave Features of a Hyperbolic Model Descri bing Dissipative Magnetofluid-Dynamics, J. de Mécanique Théor. Appl. 6, 6, 761–770, 1987.ADSMATHGoogle Scholar
  5. [5]
    Fusco D. and Oliveri F., Derivation of a Nonlinear Model Equation for Wave Pro pagation in Bubbly Liquids, to appear on Meccanica.Google Scholar
  6. [6]
    Valenti A., The Asymptotic Analysis of Nonlinear Waves in Magneto-Thermoelastic Solids with Thermal Relaxation, ZAMP, 39, 299–312, 1988.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    Germain P., Progressive Waves, Jber. D. G. L. R. 1971, Koln, 11–30, 1972.Google Scholar
  8. [8]
    Engelbrecht J., Theory of Nonlinear Wave Propagation with Application to the In teraction and Inverse Problems, Int. J. Non-Linear Mech., 12, 189–201, 1977.ADSMATHCrossRefGoogle Scholar
  9. [9]
    Fusco D., Onde Non Lineari Dispersive e Dissipative, Bollettino U. M. I., 16-A, 5, 450–458, 1979.MathSciNetGoogle Scholar
  10. [10]
    Boillat G., La Propagation des Ondes, Gauthier-Viliars, Paris 1965.MATHGoogle Scholar
  11. [11]
    Ruggeri T., Extended Thermodynamics of Thermoelastic Solids, Proceedings of the Symposium on “Finite Thermoelasticity”, 1985, Atti Acc. Naz. Lincei, 189–217, 1986.Google Scholar
  12. [12]
    Landau L. and Lifchitz E., Théorie de l’Elasticitè, ed. MIR, Moscou, 1967.MATHGoogle Scholar
  13. [13]
    Landau L. and Lifchitz E., Mécanique des Fluides, ed. MIR, Moscou, 1971.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • D. Fusco
    • 2
  • N. Manganaro
    • 1
  1. 1.Dipartimento di MatematicaUniversità di MessinaSant’Agata, MessinaItaly
  2. 2.Dipartimento di Matematica e ApplicazioniUniversità di NapoliNapoliItaly

Personalised recommendations