Skip to main content

Fractals in Diffusion-Controlled Kinetics

  • Conference paper
Reactions in Compartmentalized Liquids

Abstract

The rate constants of diffusion-control1ed reactions are calculated for different fractal geometries of the trajectories of the reacting particles. This leads to rate constants, which are smaller than predicted by Smoluchowski’s classical equation, if reacting particles and solvent molecules are of similar size. The theory is extended to reactions in fractal media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, San Francisco

    Google Scholar 

  2. Pietronero L, Tosatti E (eds) (1986) Fractals in Physics. North Holland, Amsterdam

    Google Scholar 

  3. Boccara N, Daoud M (eds) (1986) Physics of Finely Divided Matter. Springer-Verlag, Berlin

    Google Scholar 

  4. Farin D, Peleg S, Yavin D, Avnir D (1985) Langmuir 1:399

    Article  CAS  Google Scholar 

  5. Paumgartner D, Losa G, Weibel ER (1981) J Microscopy 121:51

    Article  CAS  Google Scholar 

  6. Avron JE, Simon B (1981) Phys Rev Lett 46:1166

    Article  Google Scholar 

  7. Takayasu H (1982) J Phys Soc Japan 51:3057

    Article  CAS  Google Scholar 

  8. Powles JG, Rickayzen G (1986) J Phys A 19:2793

    Article  CAS  Google Scholar 

  9. Samios J, Pfeifer P, Mittag U, Obert M, Dorfmüller T (1986) Chem Phys Lett 128:545

    Article  CAS  Google Scholar 

  10. Löpez-Quintela MA, Tojo C, Buján-Núñez MC (1988) Molec Phys 65:1195

    Article  Google Scholar 

  11. Mandelbrot BB (1986) Fractals in Physics. Pietronero L, Tosatti E (eds), North Holland, Amsterdam

    Google Scholar 

  12. Suzuki M (1984) Progr Theor Phys 71:1397

    Article  Google Scholar 

  13. Cederbaum LS, Haller E, Pfeifer P (1985) Phys Rev A 31:1869

    Article  CAS  Google Scholar 

  14. Löpez-Quintela MA, Pérez-Moure JC, Buján-Núñez MC, Samios J (1987) Chem Phys Lett 138:476

    Article  Google Scholar 

  15. Löpez-Quintel a MA, Buján-Núñez MC, Pérez-Moure JC, Chem Phys, in print

    Google Scholar 

  16. Résibois P, de Leener M (1977) Classical Kinetic Theory of Fluids. John Wiley, New York

    Google Scholar 

  17. Rice SA (1985) Comprehensive Chemical Kinetics Vol 25. Bamford CH, Tipper CFH, Compton RG (eds), Elsevier, Amsterdam

    Google Scholar 

  18. Toxvaerd S (1986) Phys Lett 114A:159

    Google Scholar 

  19. Northrup SH, Hynes JY (1978) J Chem Phys 69:1352

    Article  Google Scholar 

  20. Löpez-Quintela MA, Buján-Núñez MC, Pérez-Moure JC (1988) J Chem Phys 88:7478

    Article  Google Scholar 

  21. Tachiya M (1987) J Chem Phys 87:4718, 4622

    Google Scholar 

  22. Nakamura Y, Shinsaka K, Hatano Y (1983) J Chem Phys 78:5820

    Article  CAS  Google Scholar 

  23. Löpez-Quintela MA, Buján-Núñez MC to be published

    Google Scholar 

  24. Meakin P (1984) Kinetics of Aggregation and Gelation. Family F, Landau DP (eds), Elsevier, Amsterdam

    Google Scholar 

  25. Pynn R, Skjeltorp A (eds) (1985) Scaling Phenomena in Disordered Systems. Plenum Press, New York

    Google Scholar 

  26. Cortens E, Vacher R (1987) Z Phys B 68:355

    Article  Google Scholar 

  27. Avnir D, Farin D, Pfeifer P (1983) J Chem Phys 79:3566

    Article  CAS  Google Scholar 

  28. Avnir D, Farin D, Pfeifer P (1984) Nature 308:261

    Article  CAS  Google Scholar 

  29. Axelos M, Choubar J, Bottero JY, Fiessinger F (1985) J Physique 46:1587

    Article  CAS  Google Scholar 

  30. O’Shaughnessy B, Procaccia I (1985) Phys Rev Lett 54:455

    Article  Google Scholar 

  31. Grefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50:77

    Article  Google Scholar 

  32. Farin D, Avnir D (1987) J Phys Chem 91:5517

    Article  CAS  Google Scholar 

  33. Farin D, Avnir D (1988) J Am Chem Soc 110:2039

    Article  CAS  Google Scholar 

  34. Avnir D (1987) J Am Chem Soc 109:2931

    Article  CAS  Google Scholar 

  35. Meyer AY, Farin D, Avnir D (1986) J Am Chem Soc 108:7897

    Article  CAS  Google Scholar 

  36. Newhouse JS, Kopelman R (1988) J Phys Chem 92:1538

    Article  CAS  Google Scholar 

  37. Meakin P (1986) Chem Phys Lett 123:428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lõpez-Quintela, M.A., Knoche, W. (1989). Fractals in Diffusion-Controlled Kinetics. In: Knoche, W., Schomäcker, R. (eds) Reactions in Compartmentalized Liquids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74787-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74787-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51188-5

  • Online ISBN: 978-3-642-74787-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics