Skip to main content

Mammalian Cell Mutations

  • Chapter
  • 113 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 94 / 2))

Abstract

The importance of in vitro assays of mutation in mammalian cells in the detection and study of carcinogens follows from a consideration of the role of mutation in carcinogenesis. An involvement of mutagenesis is implied from studies of the modulation of oncogenes where G → T transversion in codon 12 of H-ras was seen in the activation of a human oncogene in bladder tumour carcinoma cells (Reddy et al. 1982). Point mutations at other positions within ras genes have also been detected. For example, point mutations at codon 13 have been observed in DNA from patients with acute myeloid leukaemia (Bos et al. 1985). A direct involvement of mutation is seen in studies in which mutations have been analysed in tumours from rodents treated with classical carcinogens. Here codon 12 of the H-ras gene was shown to be altered in mammary tumours induced by nitroso-methylurea in rats (Sukumar et al. 1983). In mouse liver, spontaneous tumours or tumours induced by treatment with furan and furfuranal were analysed (Reynolds et al. 1987). In the spontaneous tumours the activated H-ras mutations were always at codon 61. However, 40%–60% of the ras oncogenes detected in the furan- or furfural-induced tumours were at sites other than codon 61, suggesting that these novel mutations are a reflection of mutagen specificity. Two activated raf genes and four undefined oncogenes were detected in this study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertini RJ (1985) Somatic gene mutations in vivo as indicated by the 6-thioguanine-resistant T-lymphocytes in human blood. Mutation Res 150:411–422

    PubMed  CAS  Google Scholar 

  • Albertini RJ, Nicklas JA, Sullivan LM, Hunter TC, O’Neill JP (1987) hgprt Mutation in vivo in human T lymphocytes: quantitative considerations. In: Moore MM, De Marini DM, De Serres FJ, Imdall KR (eds) Mammalian cell, mutagenesis. Cold Spring Harbor, pp 139–148 (Banbury Report 28)

    Google Scholar 

  • Albino AP, Le Strange RL, Oliff AI, Furth ME, Old LJ (1984) Transforming ras genes from human melanoma: a manifestation of tumour heterogeneity? Nature 308:69–72

    PubMed  CAS  Google Scholar 

  • Arita I, Tatsumi I, Tachibana A, Toyoda M, Takebe H (1988) Instability of Mex phenotype in human lymphoblastoid cell lines. Mutation Res 208:167–172

    PubMed  CAS  Google Scholar 

  • Arlett CF (1977) Mutagenicity testing with Y79 Chinese hamster cells. In: Kilby BJ, Legator M, Nichols W, Ramel C (eds) Handbook of mutagenicity test procedures. Elsevier, Amsterdam, pp 175–192

    Google Scholar 

  • Arlett CF, Cole J (1986) Mutation studies in cells established from human cancer prone syndromes. In: Ramel C, Lambert B, Magnusson J (eds) Genetic toxicology of environmental chemicals. Part A: principles and mechanisms of action. Liss, New York, pp 237–244

    Google Scholar 

  • Arlett CF, Cole J (1988) The role of mammalian cell mutation assays in mutagenicity and carcinogenicity testing. Mutagenesis 6:455–458

    Google Scholar 

  • Arlett CF, Harcourt SA (1982) Variation in response to mutagens amongst normal and repair-defective human cells. In: Lawrence CW (ed) Induced mutagenesis molecular mechanisms and their implications for environmental protection. Plenum, New York, pp 249–266

    Google Scholar 

  • Arlett CF, Harcourt SA (1983) The mutagen sensitivity response of cells from individuals heterozygous for DNA repair deficiency genes. In: Castellani A (ed) The use of human cells for the evaluation of risk from physical and chemical agents. Plenum, New York, pp 155–167

    Google Scholar 

  • Arlett CF, Turnbull D, Harcourt SA, Lehmann AR, Colella CM (1975) A comparison of the 8-azaguanine and ouabain resistance systems for the selection of induced mutant Chinese hamster cells. Mutation Res 33:261–278

    PubMed  CAS  Google Scholar 

  • Ashby J(1986a) Letter to the editor. Mutagenesis 1:309–317

    PubMed  CAS  Google Scholar 

  • Ashby J (1986b) The prospects for a simplified and internationally harmonized approach to the detection of possible human carcinogens and mutagens. Mutagenesis 1:3-l6

    PubMed  CAS  Google Scholar 

  • Ashman CR, Davidson RL (1984) High spontaneous mutation frequency in shuttle vector sequences recovered from mammalian cellular DNA. Mol Cell Biol 4:2266–2272

    PubMed  CAS  Google Scholar 

  • Ashman CR, Davidson RL (1985) High spontaneous mutation frequency of BPV shuttle vector. Somatic Cell Mol Genet 11:499–504

    CAS  Google Scholar 

  • Ashman CR, Jagadeeswaran P, Davidson RL (1986) Efficient recovery and sequencing of mutant genes from mammalian chromosomal DNA. Proc Natl Acad Sei USA 83:3356–3368

    CAS  Google Scholar 

  • Baker RM, Brunette DM, MankovitzR, Thompson LH, WhitmoreGF, SiminovitchL, Till TE (1974) Ouabain-resistant mutants of mouse and hamster cells in culture. Cell 1:9–21

    Google Scholar 

  • Begg AH, Axelman J, Migeon BR (1986) Reactivation of X-linked genes in human fibroblasts transformed by origin-defective SV40. Somatic Cell Mol Genet 12:585–594

    Google Scholar 

  • Borek C, Ong A, Mason H (1987) Distinctive transforming genes in X-ray-transformed mammalian cells. Proc Natl Acad Sei USA 84:794–798

    CAS  Google Scholar 

  • Bos JL, Toksoz D, Marshall CJ, Verlaan-de Vries M, Veeneman GH, Van Der Eb AJ, Van Boom JH, Janssen WG, Steenvoorden CM (1985) Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315:726–730

    PubMed  CAS  Google Scholar 

  • Bradley WEC, Gareau JLP, Seifert AM, Messing K (1987) Molecular characterisation of 15 rearrangements among 90 in vivo somatic mutants shows that deletions predominate. Mol Cell Biol 7:956–960

    PubMed  CAS  Google Scholar 

  • Bradshaw HD J, Deininger P (1984) Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells. Mol Cell Biol 4:2316–2320

    PubMed  CAS  Google Scholar 

  • Bredberg A, Kraemer KH, Seidman MM (1986) Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells. Proc Natl Acad Sei USA 83:8273–8277

    CAS  Google Scholar 

  • Breimer LH (1988) Ionising radiation-induced mutagenesis. Br J Cancer 57:6–18

    PubMed  CAS  Google Scholar 

  • Breimer LH, Nalbantoglu J, Meuth M (1986) Structure and sequence of mutations induced by ionizing radiation at selectable loci in Chinese hamster ovary cells. J Mol Biol 192:669–674

    PubMed  CAS  Google Scholar 

  • Brennand J, Chinault AC, Konecki DS, Melton DW, Caskey CT (1982) Cloned cDNA sequences of the hypoxanthine/guanine phosphoribosyltransferase gene from a mouse neuroblastoma cell line found to have amplified genomic sequences. Proc Natl Acad Sei USA 79:1950–1954

    CAS  Google Scholar 

  • Bridges BA (1975) Genetic effects of UV on Escherichia coli -a model for prokaryotes. In: Nygaard OF, Adler HI, Sinclair WK (eds) Radiation research, biomedical, chemical, and physical perspectives. Academic, New York, pp 626–631

    Google Scholar 

  • Bridges BA (1976) Mutation induction. In: Macdonald KD (ed) Second intern symp genetics of indust microorgs. Academic, London

    Google Scholar 

  • Bridges BA (1981) How important are somatic mutations and immune control in skin cancer? Reflections on xeroderma pigmentosum. Carcinogenesis 2:471–472

    PubMed  CAS  Google Scholar 

  • Bridges BA, Harnden DG (1982) Ataxia-telangiectasia — a cellular and molecular link between cancer, neuropathology and immune deficiency. Wiley, London

    Google Scholar 

  • Brown R, Thacker J (1984) The nature of mutants induced by ionising radiation in cultured cells. I. Isolation and initial characterisation of spontaneous, ionising radiation induced, and EMS induced mutants resistant to 6-TG. Mutation Res 129:269–281

    PubMed  CAS  Google Scholar 

  • Brusick D (1986) Genotoxic effects in cultured mammalian cells produced by low pH treatment conditions and increased ion concentrations. Environ Mutagen 8:879–886

    PubMed  CAS  Google Scholar 

  • Calos MP, Lebkowski JS, Botchan MR (1983) High mutation frequency in DNA trans-fected into mammalian cells. Proc Natl Acad Sei USA 80:3015–3019

    CAS  Google Scholar 

  • Cavenee W, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784

    PubMed  CAS  Google Scholar 

  • Clive D, Flamm WG, Machesko MR, Berhnheim NJ (1972) A mutational assay system using the thymidine kinase locus in mouse lymphoma cells. Mutation Res 16:77–87

    PubMed  CAS  Google Scholar 

  • Clive D, Johnson JFS, Spector AG, Batson AG, Brown MM (1979) Validation and characterization of the L5178Y/TK Mouse lymphoma mutagen assay system. Mutat Res 59:61–108

    PubMed  CAS  Google Scholar 

  • Clive D, Turner N, Krehl R (1988) Procarbazine is a potent mutagen at the heterozygous thymidine kinase (tk+/”) locus of mouse lymphoma assay. Mutagenesis 3:83–87

    PubMed  CAS  Google Scholar 

  • Cole J, Arlett CF (1976) Ethyl methanesulphonate mutagenesis with L5178Y mouse lymphoma cells: a comparison of ouabain, thioguanine and excess thymidine resistance. Mutat Res 34:507–526

    PubMed  CAS  Google Scholar 

  • Cole J, Arlett CF, Green MHL (1976) The fluctuation test as a more sensitive system for determining induced mutation in L5178 Y mouse lymphoma cells. Mutat Res 41:377–386

    PubMed  CAS  Google Scholar 

  • Cole J, Arlett CF, Green MHL, Lowe J, Muriel W (1983) A comparison of the agar cloning and microtitration techniques for assaying cell survival and mutation frequency in L5178Y mouse lymphoma cells. Mutat Res 111:371–386

    PubMed  CAS  Google Scholar 

  • Cole J, Muriel WJ, Bridges BA (1986) The mutagenicity of sodium fluoride to L5178Y [wild-type and TK +/- (3.7.2C)] mouse lymphoma cells. Mutagenesis 1:157–167

    PubMed  CAS  Google Scholar 

  • Cox R, Masson WK (1978) Do radiation-induced thioguanine-resistant mutants of cultured mammalian cells arise by HGPRT gene mutation or X-chromosome rearrangement? Nature 276:629–630

    PubMed  CAS  Google Scholar 

  • Croce CM (1986) Chromosome translocation and human cancer. Cancer Res 46:6019–6023

    PubMed  CAS  Google Scholar 

  • Davies DR, Evans HJ (1966) The role of genetic damage in radiation induced cell lethality. Adv Radiat Biol 2:243–353

    CAS  Google Scholar 

  • Day RS, Ziolkowsky CHJ, Scudiero DA, Meyer SH, Lubinieck AS, Giradi AJ, Galloway SM, Bynum GD (1980) Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains. Nature 228:724–727

    Google Scholar 

  • Dempsey JL, Morley AA (1986) Measurement of in vivo mutant frequency in lymphocytes in the mouse. Environ Mutagen 8:385–391

    PubMed  CAS  Google Scholar 

  • Drinkwater N, Klinedinst DK (1986) Chemically induced mutagenesis in a shuttle vector with a low background mutant frequency. Proc Natl Acad Sei USA 83:3402–3406

    CAS  Google Scholar 

  • Drobetsky EA, Grosovsky AJ, Glickman BW (1987) The specificity of UV-induced mutations at an endogenous locus in mammalian cells. Proc Natl Acad Sei USA 84:9103–9107

    CAS  Google Scholar 

  • DuBridge R, Tang P, Hsia HC, Leong P-M, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7:379–387

    PubMed  CAS  Google Scholar 

  • DuBridge RB, Calos MP (1988) Recombinant shuttle vectors for the study of mutation in mammalian cells. Mutagenesis 3:1–10

    PubMed  CAS  Google Scholar 

  • Ennever FK, Noonan TJ, Rosenkranz HS (1987) The predictivity of animal bioassays and short-term genotoxicity tests for carcinogenicity and non-carcinogenicity to humans. Mutagenesis 2:73–78

    PubMed  CAS  Google Scholar 

  • Evans HJ (1988) Mutation cytogenetics: past, present and future. Mutat Res 204:355–363

    PubMed  CAS  Google Scholar 

  • Fainstein E, Marcelle C, Rosner A, Canaani E, Gale RP, Dreazen O, Smith SD, Croce CM (1987) A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature 330:386–391

    PubMed  CAS  Google Scholar 

  • Fox M, Radacic M (1978) Adaptational origin of some purine-analogue resistant phenotypes in cultured mammalian cells. Mutat Res 49:275–296

    PubMed  CAS  Google Scholar 

  • Fuscoe JC, Fenwick JRG, Ledbetter DH, Caskey CT (1983) Deletion and amplification of the HGPRT locus in Chinese hamster cells. Mol Cell Biol 3:1086–1096

    PubMed  CAS  Google Scholar 

  • Fuscoe JC, Ockey CH, Fox M (1986) Molecular analysis of X-ray-induced mutants at the HPRT locus in V79 Chinese hamster cells. Int J Radiat Biol 49:1011–1020

    CAS  Google Scholar 

  • Garner RC, Kirkland DJ (1986) Reply. Mutagenesis 1:233–235

    CAS  Google Scholar 

  • Gatehouse DG, Tweats DJ (1986) Letter to the editor. Mutagenesis 1:307–308

    PubMed  CAS  Google Scholar 

  • Gebara MM, Drevon C, Harcourt SA, Steingrimsdottir H, James MR, Burke JF, Arlett CF, Lehmann AR (1987) Inactivation of a transfected gene in human fibroblasts can occur by deletion, amplification, phenotypic switching, or methylation. Mol Cell Biol 7:1459–1464

    PubMed  CAS  Google Scholar 

  • Gey GO, Coffman WD, Kubicek WT (1952) Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12:264–265

    Google Scholar 

  • Gibbs RA, Caskey CT (1987) Molecular analysis of human hprt mutations. In: Moore MM, De Marini DM, De Serres FJ, Tindali KR (eds) Mammalian cell mutagenesis. Banbury Report 28, Cold Spring Harbor, pp 237–247

    Google Scholar 

  • Glazer PM, Sarkar SN, Summers WC (1986) Detection and analysis of UV-induced mutations in mammalian cell DNA using a lambda phage shuttle vector. Proc Nat Acad Sci USA 83:1041–1044

    PubMed  CAS  Google Scholar 

  • Glickman BW, Drobetsky EA, Grososvsky AJ (1987) A study of the specificity of spontaneous and UV-induced mutation at the endogenous aprt gene of Chinese hamster overy cells. In: Moore MM, De Marini DM, De Serres FJ, Tindall KR (eds) Mammalian cell mutagenesis. Banbury Report 28, Cold Spring Harbor, pp 167–182

    Google Scholar 

  • Green MHL, Lowe JE, Arlett CF, Harcourt SA, Burke JF, James MR, Lehmann AR, Povey SM (1987) A gamma-ray resistant derivative of an ataxia-telangiectasia cell line obtained following DNA-mediated gene transfer. J Cell Sci [Suppl] 6:127–137

    CAS  Google Scholar 

  • Grosovksy AJ, Drobetsky EA, De Jong PJ, Glickman BW (1986) Southern analysis of genomic alterations in gamma ray induced APRT” hamster cell mutants. Genetics 113:405–415

    Google Scholar 

  • Harris M (1973) Anomalous patterns of mutation in cultured mammalian cells. Genetics 73:181–185

    Google Scholar 

  • Hauser J, Seidman MM, Sidur K, Dixon K (1986) Sequence specificity of point mutations induced during passage of a UV-irradiated shuttle vector plasmid in monkey cells. Mol Cell Biol 6:277–285

    PubMed  CAS  Google Scholar 

  • Hauser J, Levine AS, Dixon K (1987) Unique pattern of point mutations arising after gene transfer into mammalian cells. EMBO J 6:63–67

    PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Google Scholar 

  • Henderson EE, Ribecky R (1980) DNA repair in lymphoblastoid cell lines established from human genetic disorders. Chem Biol Interact 33:63–82

    PubMed  CAS  Google Scholar 

  • Henderson L, Cole H, Cole J, James SE, Green MHL (1986) Detection of somatic amuta-tions in man: evaluation of the microtiter cloning assay for T-lymphocytes. Mutagenesis 1:195–200

    PubMed  CAS  Google Scholar 

  • Hoar DI (1975) Phenotypic manifestations of ataxia-telangiectasia. Lancet ii:1048

    Google Scholar 

  • Hogan B, Fellous M, Avner P, Jacob F (1977) Isolation of a human teratoma cell line which expresses F9 antigen. Nature 270:515–518

    PubMed  CAS  Google Scholar 

  • Howell JN, Greene MH, Corner RC, Maher VM, MeCormick J J (1984) Fibroblasts from patients with hereditary cutaneous malignant melanoma are abnormally sensitive to the mutagenic effect of simulated sunlight and 4-nitroquinoline-l-oxide. Proc Natl Acad Sci USA 81:1179–1183

    PubMed  CAS  Google Scholar 

  • Hozier J, Sawyer J, Clive D, Morre M (1985) Chromosome 11 aberrations in small colony L5178Y -/- mutants early in their clonal history. Ann NY Acad Sci 107:423–125

    Google Scholar 

  • Huschtscha LI, Holliday R (1983) Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J Cell Sci 63:77–99

    PubMed  CAS  Google Scholar 

  • Ishidate M Jr, Harnois MC (1987) The clastogenicity of chemicals in cultured mammalian cells. Letter to the editor. Mutagenesis 2:240–243

    PubMed  CAS  Google Scholar 

  • Ishidate MJ (1983) The data book of chromosomal aberration tests in vitro. Realize, Tokyo

    Google Scholar 

  • Janatipour M, Trainor KJ, Kutlaca R, Bennett G, Hay J, Turner DR, Morley AA (1988) Mutations in human lymphocytes studied by an HLA selection system. Mutat Res 198:221–226

    PubMed  CAS  Google Scholar 

  • Jolly DJ, Okayama H, Berg P, Esty AC, Filpula D, Bohlen P, Johnson GG, Shively JE, Hunkapillar T, Friedmann T (1983) Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci USA 80:477–481

    PubMed  CAS  Google Scholar 

  • Jones IM, Burkhart-Schultz K, Crippen TL (1987 a) Cloned mouse lymphocytes permit analysis of somatic mutations that occur in vivo. Somatic Cell Mol Genet 13:325–333

    CAS  Google Scholar 

  • Jones IM, Burkhart-Schultz K, Strout CL, Crippen TL (1987b) Factors that affect the frequency of thioguanine-resistant lymphocytes in mice following exposure to ethyl- nitrosourea. Environ Mutagen 9:317–329

    PubMed  CAS  Google Scholar 

  • Kavathas P, Bach FH, DeMars R (1980) Gamma ray-induced loss of expression of HLA and glyoxalase 1 alleles in lymphoblastoid cells. Proc Natl Acad Sci USA 77:4251–4255

    PubMed  CAS  Google Scholar 

  • Kelly WN, Wyngaarden JB (1983) Clinical syndromes associated with hypoxanthine- guanine phosphoribosyltransferase deficiency. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York, pp 1115–1143

    Google Scholar 

  • King HWS, Brookes P (1984) On the nature of mutations induced by the diolepoxide of benzo(a)pyrene in mammalian cells. Carcinogenesis 5:965–970

    PubMed  CAS  Google Scholar 

  • Koneeki DS, Brennand J, Fuscoe JC, Caskey CT, Chinault AC (1982) Hypoxanthine- guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants. Nucleic Acids Res 10:6753–6775

    Google Scholar 

  • Koufos A, Hansen MF, Copeland N, Jenkins NA, Lampkin BC, Cavenee WK (1985) Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature 316:330–334

    PubMed  CAS  Google Scholar 

  • Kraemer KH (1980) Xeroderma pigmentosum. In: Demis DJ, Dobson RL, McGuire J (eds) Clinical dermatology, vol 4. Harper and Row, Hagerstown, pp 1–33

    Google Scholar 

  • Kraemer KH, Lee MM, Scotto J (1987) Xeroderma pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermatol 123:241–250

    PubMed  CAS  Google Scholar 

  • Lambert B, Chu EHY, De Carli L, Ehling UH, Evans HJ, Hayashi M, Thilly WG, Vainio H (1986) Assays for genetic changes in mammalian cells. I ARC Sci Publ 83:167–243

    Google Scholar 

  • Langlois RG, Bigbee WL, Kyoizumi S, Nakamura N, Bean MA, Akiyama M, Jensen RH (1987) Evidence for increased somatic cell mutations at the glycophorin A locus in atomic bomb survivors. Science 236:445–448

    PubMed  CAS  Google Scholar 

  • Lehmann AR (1987) Cockayne’s syndrome and trichothiodystrophy: defective repair without cancer. Cancer Rev 7:82–103

    Google Scholar 

  • Liber HL, Leong PK, Terry VH, Little JB (1986) X-rays mutate human lymphoblast cells at genetic loci that should respond only to point mutagens. Mutat Res 163:91–97

    PubMed  CAS  Google Scholar 

  • Lowy I, Pellicer A, Jackson JF, Sim G-K, Silverstein S, Axel R (1980) Isolation of transforming DNA: cloning the hamster aprt gene. Cell 22:817–823

    PubMed  CAS  Google Scholar 

  • MacGregor GR, Burke JF (1987) Stability of a bacterial gene in a bovine papilloma virus- based shuttle vector maintained extrachromosomally in mammalian cells. J Gen Virol 68:247–252

    PubMed  CAS  Google Scholar 

  • MacGregor GR, James MR, Arlett CF, Burke JF (1987) Analysis of mutations occurring during replication of a SV40 shuttle vector in mammalian cells. Mutat Res 183: 273–278

    PubMed  CAS  Google Scholar 

  • Marshall CJ, Vousden KM, Phillips DM (1984) Activation of c-Ha-ras-l proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide. Nature 310:586–589

    PubMed  CAS  Google Scholar 

  • Masters JRW, Hepburn PJ, Walker L, Highman W, Trejdosiewicz LK, Povey S, Parkar M, Hill BT, Riddle PR, Franks LM (1986) Tissue culture model of transitional cell carcinoma: characterisation of twenty-two human urothelial cell lines. Cancer 46: 3630–3636

    CAS  Google Scholar 

  • Mathew CGP, Smith BA, Thorpe K, Wong K, Royle NJ, Jeffreys AJ, Ponder BAJ (1987) Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 328:524–526

    PubMed  CAS  Google Scholar 

  • Mayne LV, Priestley A, James MR, Burke JF (1986) Efficient immortalization and morphological transformation of human fibroblasts by transfection with SV40 DNA linked to a dominant marker. Exp Cell Res 162:530–538

    PubMed  CAS  Google Scholar 

  • McGregor D, Riach C, Cattanach P, Caspary W (1987) Development and investigation of an expanded CHO/hgprt locus assay. Mutagenesis 2:303

    Google Scholar 

  • Messing K, Bradley WEC (1985) In vivo mutant frequency rises among breast cancer patients after exposure to high doses of gamma-irradiation. Mutat Res 152:107–112

    PubMed  CAS  Google Scholar 

  • Meuth M, Arrand JE (1982) Alterations of gene structures in EMS-induced mutants of mammalian cells. Mol Cell Biol 2:1459–1462

    PubMed  CAS  Google Scholar 

  • Meuth M, Nalbantoglu J, Phear G, Miles C (1987) Molecular basis of genome rearrangements at the hamster aprt locus. In: Moore MM, De Marini DM, De Serres FJ, Tindall KR (eds) Mammalian cell mutagenesis. Banbury Report 28, Cold Spring Harbor, pp 183–191

    Google Scholar 

  • Mitchell PJ, Urlaub G, Chasin L (1986) Spontaneous splicing mutations at the dihydrofo- late reductase locus in Chinese hamster ovary cells. Mol Cell Biol 6:1926–1935

    PubMed  CAS  Google Scholar 

  • Montesano R, Bartsch H, Vainio H, Wilbourn J, Yamasaki H (1986) Long-term and short-term assays for carcinogens: a critical appraisal. IARC Sci Publ 83. IARC, Lyon

    Google Scholar 

  • Moore MM, Clive D, Howard BE, Batson AG, Turner NT (1985a) In situ analysis of trifluorothymidine-resistant (TFTr) mutants of L5178Y/TK+/_ mouse lymphoma cells. Mutat Res 151:147–159

    PubMed  CAS  Google Scholar 

  • Moore MM, Clive D, Hozier JC, Howard BE, Batson AG, Turner NT, Sawyer J (1985b) Analysis of trifluorothymidine-resistant (TFTr) mutants of L5178Y/TK+/- mouse lymphoma cells. Mutat Res 151:161–174

    PubMed  CAS  Google Scholar 

  • Moore MM, De Marini DM, De Serres FJ, Tindall KR (1987) Mammalian cell mutagenesis. Banbury Report 28:1–385

    Google Scholar 

  • Morison WL, Bucana C, Hashem N, Kripke ML, Cleaver JE, German JL (1985) Impaired immune function in patients with xeroderma pigmentosum. Cancer Res 45:3929–3931

    PubMed  CAS  Google Scholar 

  • Morley AA, Trainor KJ, Dempsey JL, Seshadri RS (1985) Methods for study of mutations and mutagenesis in human lymphocytes. Mutat Res 147:363–367

    PubMed  CAS  Google Scholar 

  • Morrell D, Cromartie E, Swift M (1986) Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. JNCI 77:89–92

    PubMed  CAS  Google Scholar 

  • Murnane JP, Fuller LF, Painter RB (1985) Establishment and characterization of a permanent pSV ori~-transformed ataxia-telangiectasia cell line. Exp Cell Res 158:119–126

    PubMed  CAS  Google Scholar 

  • Nadon N, Sekhon G, Brown LJ, Korn N, Petersen JW, Strandtmann J, Chang C, DeMars R (1986) Derepression of HPRT locus on inactive X chromosome of human lymphoblastoid cell line. Somatic Cell Mol Genet 12:541–554

    CAS  Google Scholar 

  • Nalbantoglu J, Goncalves O, Meuth M (1983) Structure of mutant alleles at the aprt locus of CHO cells. J Mol Biol 167:575–594

    PubMed  CAS  Google Scholar 

  • Nalbantoglu J, Phear G, Meuth M (1987) DNA sequence analysis of spontaneous mutations at the aprt locus of hamster cells. Mol Cell Biol 7:1445–1449

    PubMed  CAS  Google Scholar 

  • Nicklas JA, O’Neill JP, Albertini RJ (1986) Use of T-cell receptor gene probes to quantify the in vivo hprt mutations in human T-lymphocytes. Mutat Res 173:67–72

    PubMed  CAS  Google Scholar 

  • Padua RA, Barrass N, Currie GA (1984) A novel transforming gene in a human malignant melanoma cell line. Nature 311:671–673

    PubMed  CAS  Google Scholar 

  • Paeratakul U, Taylor MW (1986) Isolation and characterisation of mutants at the APRT locus in the L-5178Y TK+/TK” mouse lymphoma cell line. Mutat Res 160:61–69

    PubMed  CAS  Google Scholar 

  • Patel PI, Framson PE, Caskey CT, Chinault AC (1986) Fine structure mapping of the human hypoxanthine phosphoribosyltransferase gene. Mol Cell Biol 6:393–403

    PubMed  CAS  Google Scholar 

  • Perera MIR, Um KI, Grenne MH, Waters HL, Bredberg A, Kraemer KH (1986) Hereditary dysplastic nevus syndrome: lymphoid cell ultraviolet hypermutability in association with increased melanoma susceptibility. Cancer Res 4:1005–1009

    Google Scholar 

  • Pippard EC, Hall AJ, Barker DJP, Bridges BA (1988) Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. Cancer Res 48:2929–2933

    PubMed  CAS  Google Scholar 

  • Povey S, Gardiner SE, Watson B, Mowbray S, Harris H, Arthur E, Steel CM, Blenkinsop C, Evans HJ (1973) Genetic studies on human lymphoblastoid lines: isozyme analysis on cell lines from forty-one different individuals and on mutants produced following exposure to a chemical mutagen. Ann Hum Genet 36:247–266

    PubMed  CAS  Google Scholar 

  • Puck TT, Waldren CA (1987) Mutation in mammalian cells: theory and implications. Somatic Cell Mol Genet 13:405–409

    CAS  Google Scholar 

  • Razzaque A, Mizusawa H, Seidman M (1983) Rearrangement and mutagenesis of a shuttle vector plasmic after passage in mammalian cells. Proc Natl Acad Sci USA 80:3010–3014

    PubMed  CAS  Google Scholar 

  • Razzaque A, Chakrabarti S, Joffee S, Seidman M (1984) Mutagenesis of a shuttle vector plasmid in mammalian cells. Mol Cell Biol 4:435–441

    PubMed  CAS  Google Scholar 

  • Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152

    PubMed  CAS  Google Scholar 

  • Reynolds SH, Stowers SJ, Patterson RM, Maronpot RR, Aaronson SA, Anderson MW (1987) Activated oncogenes in B6C3F1 mouse liver tumours: implications for risk assessment. Science 237:1309–1316

    PubMed  CAS  Google Scholar 

  • Rogers AM, Hill R, Lehmann AR, Arlett CF, Burns VW (1980) The induction and characterization of mouse lymphoma L5178Y cell lines resistant to l-/?-D-arabinofura- nosyl-cytosine. Mutat Res 69:139–148

    PubMed  CAS  Google Scholar 

  • Rosenkranz HS (1988) Strategies for the deployment of batteries of short-term tests. Mutat Res 205:1–426

    Google Scholar 

  • Rouleau GA, Wertelecki W, Haines JL, Hobbs WJ, Trofatter JA, Seizinger BR, Martuza RL, Superneau DW, Conneally PM, Gusella JF (1987) Genetic linkage of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22. Nature 329:246–248

    PubMed  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    PubMed  CAS  Google Scholar 

  • Sanderson BJS, Dempsey JL, Morley AA (1984) Mutations in human lymphocytes: effect of X- and UV-irradiation. Mutat Res 140:223–227

    PubMed  CAS  Google Scholar 

  • Sarkar S, DasGupta UB, Summers WC (1984) Error-prone mutagenesis detected in mammalian cells by a shuttle vector containing the supF gene of Escherichia coli. Mol Cell Biol 4:2227–2230

    PubMed  CAS  Google Scholar 

  • Seetharam S, Protic-Sabljic M, Seidman MM, Kraemer KH (1987) Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts in a patient with the skin cancer-prone disease, xeroderma pigmentosum. J Clin Invest 80:1613–1617

    PubMed  CAS  Google Scholar 

  • Seidman MM, Dixon K, Razzaque A, Zagursky RJ, Berman ML (1985) A shuttle vector plasmic for studying carcinogen-induced point mutations in mammalian cells. Gene 38:233–237

    PubMed  CAS  Google Scholar 

  • Shiloh Y, Tabor E, Becker Y (1982a) The response of ataxia-telangiectasia homozygous and heterozygous skin fibroblasts to neocarzinostatin. Carcinogenesis 3:815–820

    PubMed  CAS  Google Scholar 

  • Shiloh Y, Tabor E, Becker Y (1982b) Colony-forming ability of ataxia-telangiectasia skin fibroblasts is an indicator of their early senescence and increased demand for growth factors. Exp Cell Res 140:191–199

    PubMed  CAS  Google Scholar 

  • Simons JWIM (1982) Studies on survival and mutation in ataxia-telangiectasia cells after X-irradiation under oxic and anoxic conditions. In: Bridges BA, Harnden DG (eds) Ataxia-telangiectasia — cellular and molecular link between cancer, neuropathology and immune deficiency. Wiley, Chichester, pp 165–167

    Google Scholar 

  • Simpson NE, Kidd KK, Goodfellow PJ, McDermic H, Myers S, Kidd JR, Jackson CE, Duncan AMV, Farrer LA, Brasch K, Castiglione C, Genel M, Gertner J, Greenberg CR, Gusella JF, Holden J J A, White BN (1987) Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 328:528–530

    PubMed  CAS  Google Scholar 

  • Skulimowski AW, Turner DR, Morley AA, Sanderson BJS, Haliandros M (1986) Molecular basis of X-ray-induced mutation at the HPRT locus in human lymphocytes. Mutat Res 162:105–112

    PubMed  CAS  Google Scholar 

  • Smith PJ, Greene MH, Devlin DA, McKeen EA, Paterson M (1982) Abnormal sensitivity to UV-radiation in cultured skin fibroblasts from patients with hereditary cutaneous malignant melanoma and dysplastic nevus syndrome. Int J Cancer 30:39–45

    PubMed  CAS  Google Scholar 

  • Smith PJ, Greene MH, Adams D, Paterson M (1983) Abnormal responses to the car-cinogen 4-nitroquinoline 1-oxide of cultured fibroblasts from patients with dysplastic nevus syndrome and hereditary cutaneous malignant melanoma. Carcinogenesis 4:911–916

    PubMed  CAS  Google Scholar 

  • Stamatoyannopoulos GP, Nute E, Lindsley D, Farquhar M, Brice M, Nakamoto N, Papayannopoulu T (1984) Somatic-cell mutation monitoring system based on human hemoglobin mutants. In: Ansari A A, de Serres FJ (eds) Single-cell mutation monitoring systems, methodologies and applications. Plenum, New York, pp 1–29 (Topics in chemical mutagenesis 2)

    Google Scholar 

  • Stefanini M, Lagomarsini P, Arlett CF, Marinoni S, Borrone C, Crovato F, Trevisan G, Cordone G, Nuzzo F (1986) Xeroderma pigmentosum (complementation group D) mutation is present in patients affected by trichothiodystrophy with photosensitivity. Hum Genet 74:107–112

    PubMed  CAS  Google Scholar 

  • Stefanini M, Lagomarsini P, Giorgi R, Nuzzo F (1987) Complementation studies in cells from patients affected by trichothiodystrophy with normal or enhanced photosensitivity. Mutat Res 191:117–119

    PubMed  CAS  Google Scholar 

  • Strong LC, Riccardi VM, Ferrell RE, Sparkes RS (1981) Familial retinoblastoma and chromosome 13 deletion transmitted via an insertional translocation. Science 213:1501–1503

    PubMed  CAS  Google Scholar 

  • Sugden B, Marsh K, Yates J (1985) A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol Cell Biol 5:410–413

    PubMed  CAS  Google Scholar 

  • Sukumar S, Notario V, Martin-Zanca D, Barbacid M (1983) Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-l locus by single point mutations. Nature 306:658–661

    PubMed  CAS  Google Scholar 

  • Swift M, Reitnauer PJ, Morrel D, Chase CL (1987) Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316:1289–1294

    PubMed  CAS  Google Scholar 

  • Tatsumi K, Takebe H (1984) Gamma-irradiation induces mutation in ataxia-telangiectasia lymphoblastoid cells. Gann 75:1040–1043

    PubMed  CAS  Google Scholar 

  • Tennant RW, Margolin BH, Shelby MD, Zeiger E, Haseman JK, Spalding J, Caspary W, Resnick M, Stasiewicz S, Anderson B, Minor R (1987) Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science 236:933–941

    PubMed  CAS  Google Scholar 

  • Teo I A, Lehmann AR, Muller R, Rajwesky MF (1983) Similar rate of 06-ethylguanine elimination from DNA in normal human fibroblast and xeroderma pigmentosum cell strains not transformed by SV40. Carcinogenesis 4:1075–1077

    PubMed  CAS  Google Scholar 

  • Thacker J (1986) The nature of mutants induced by ionising radiation in cultured hamster cells. III. Molecular characterisation of HPRT-deficient mutants induced by gamma rays or alpha particles showing that the majority have deletions of all or part of the hprt gene. Mutat Res 160:267–275

    PubMed  CAS  Google Scholar 

  • Thacker J, Stephens MA, Stretch A (1978) Mutation to ouabain resistance in Chinese hamster cells: induction by ethyl methanesulphonate and lack of induction by ionising radiation. Mutat Res 51:255–270

    PubMed  CAS  Google Scholar 

  • Thilly WG, DeLuca JG, Furth EE, Hoppe H IV, Kaden DA, Krolewski JJ, Liber HL, Skopek TR, Slapikoff SA, Tizard RJ, Penman BW (1980) Gene-locus mutation assays in diploid human lymphoblast lines. In: de Serres FJ, Hollaender A (eds) Chemical mutagens, vol 6. Plenum, New York, pp 331–364

    Google Scholar 

  • Tindali KR, Stankowski LF, Machanoff R, Hsie AW (1986) Analyses of mutation in pSV2gpt-transformed cells. Mutat Res 160:121–131

    Google Scholar 

  • Todd PA, Glickman BW (1982) Mutational specificity of uv light in E. coli: indications for a role for DNA secondary structure. Proc Natl Acad Sei USA 79:4123–127

    CAS  Google Scholar 

  • Turner DR, Morley AA, Haliandros AA, Kutlaca R, Sanderson BJ (1985) In vivo somatic mutations in human lymphocytes frequently result from major gene alterations. Nature 315:343–345

    PubMed  CAS  Google Scholar 

  • Tweats DJ, Gatehouse DG (1988) Further debate of testing strategies. Mutagenesis 3:95–102

    PubMed  CAS  Google Scholar 

  • Urlaub G, Kas E, Carothers AM, Chasin LA (1983) Deletions of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33:405

    PubMed  CAS  Google Scholar 

  • Urlaub G, Carothers AM, Chasin LA (1985) Efficient cloning of single-copy genes using specialised cosmid vectors: Isolation of mutant dehydrofolate reductase genes. Proc Natl Acad Sei USA 82:1189–1193

    CAS  Google Scholar 

  • Van Zeeland AA, Van Diggelen MCE, Simons JWIM (1972) The role of metabolic cooperation in selection of hypoxanthine-guanine-phosphoribosyl-transferase (HG- PRT)deficient mutants from diploid mammalian cell strains. Mutat Res 14:355–363

    Google Scholar 

  • Verwoerd NP, Bernini LF, Bonnet J, Tanke HJ, Natarajan AT, Tates AD, Sobels FH, Ploem JS (1987) Somatic cell mutations in humans detected by image analysis of im- munofluorescently stained erythrocytes. In: Burger G, Ploem JS, Goerttler K (eds) Clinical cytometry and histometry. Academic, London, pp 465–469

    Google Scholar 

  • Vrieling H, Simons JWIM, Arwert F, Natarajan AT, Van Zeeland AA (1985) Mutations induced by X-rays at the hprt locus in Chinese hamster cells are mostly large deletions. Mutat Res 144:281–286

    PubMed  CAS  Google Scholar 

  • Wagenheim J, Bolesfoldi G (1988) Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis 3:193–205

    Google Scholar 

  • Waldmann TA, Misiti J, Nelson DL, Kraemer KH (1983) Ataxia-telangiectasia: a multi-system hereditary disease with immunodeficiency, impaired organ maturation, X-ray hypersensitivity, and a high incidence of neoplasia. Ann Intern Med 99:367–379

    Google Scholar 

  • Waldren C, Correll L, Sognier MA, Puck TT (1986) Measurement of low levels of X-ray mutagenesis in relation to human disease. Proc Natl Acad Sei USA 83:4839–4843

    CAS  Google Scholar 

  • Waldren CA, Puck TT (1987) Steps toward experimental measurement of total mutations relevant to human disease. Somatic Cell Mol Genet 13:411–414

    CAS  Google Scholar 

  • Wilson JM, Young AB, Kelley WN (1983) Hypoxanthine-guanine phosphoribosyltrans- ferase deficiency. The molecular basis of the clinical syndrome. N Engl J Med 309:900–910

    PubMed  CAS  Google Scholar 

  • Wilson JM, Stout JT, Palella TD, Davidson BL, Kelley WN, Caskey CT (1986) A molecular survey of hypoxanthine-guanine phosphoribosyltransferase deficiency in man. J Clin Invest 77:188–195

    PubMed  CAS  Google Scholar 

  • Yandell DW, Dryja TP, Little JB (1986) Somatic mutation at a heterozygous autosomal locus in human cells occur more frequently by allele loss than by intragenic structural alterations. Somatic Cell Mol Genet 12:255–263

    CAS  Google Scholar 

  • Yang TP, Patel PI, Chinault AC, Stout JT, Jackson LG, Hildebrand BM, Caskey CT (1984) Molecular evidence for new mutations at the hprt locus in Lesch-Nyhan patients. Nature 310:412–414

    PubMed  CAS  Google Scholar 

  • Yates J, Warren N, Reisman D, Sugden B (1984) A ds-acting element from the Epstein- Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sei USA 81:3806–3810

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arlett, C.F. (1990). Mammalian Cell Mutations. In: Cooper, C.S., Grover, P.L. (eds) Chemical Carcinogenesis and Mutagenesis II. Handbook of Experimental Pharmacology, vol 94 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74778-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74778-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74780-9

  • Online ISBN: 978-3-642-74778-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics