Mechanische Steuerung des Skelettwachstums

  • A. Karbowski
  • H. H. Matthiaß
Conference paper

Summary

Mechanical factors control the growth pattern of bone. Epiphyseal growth cartilage especially yields to stress. The Hueter-Volkmann law explains the passive change of direction, when increased pressure parallel to the axis of epiphyseal growth will inhibit growth. The Pauwels law explains the active change by functional adaptation of bone through longitudinal growth if the pressure is exerted excentrically. So spontaneous correction of angular deformity will be mainly caused by growth cartilage. According to the Hueter-Volkmann law physeal growth is able to induce a self limiting pathological compression force by means of external devices. Blount stapling, using the axially induced compression force of the growth plate itself, is considered as a simple method of correcting angular deformities and limb length discrepancies in adolescents. Blount stapling is a good model to investigate histological and biomechanical pressure effects on growth cartilage. Tension may increase epiphyseal growth, but probably not sufficiently to be of clinical significance. Limb lengthening by distraction of the epiphyseal plate is complicated by separation of the epiphysis from the metaphysis and subseguently by impairment of growth. Rotational modelling only occurs at the epiphyseal plate. A substantially increased torsional load may be required to show rotational modelling. It is unlikely that rotational changes are induced by external devices as the laxity of ligamentous structures around the joint prevents the application of a direct force to the growth plate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arkin AM, Katz JF (1956) The effects of pressure on epiphyseal growth. J Bone Jt Surg 39-A:1056–1077Google Scholar
  2. Berchiche R, Wittek F (1983) Allongement du squelette jambier par épiphysiolyse-distraction: traitement des inégalites des membres intérieures. Acta Orthop Belg 49:321–331PubMedGoogle Scholar
  3. Bernbeck R (1949) Die pathologische Femurtorsion und Coxa valga. Z Orthop 78:44–47Google Scholar
  4. Blount WP, Clarke GR (1949) Control of bone growth by epiphyseal stapling. J Bone Jt Surg 31-A:464–478Google Scholar
  5. Bonnel F, Peruchon E, Baldet P, Dimeglio A, Rabischong P (1983) Effects of compression on growth plates in the rabbit. Acta Orthop Scand 54:730–733PubMedCrossRefGoogle Scholar
  6. Christensen NO (1973) Growth arrest by stapling. Acta Orthop Scand 151Google Scholar
  7. Crilly RG (1972) Longitudinal overgrowth of chicken radius. J Anat 112: 11–18PubMedGoogle Scholar
  8. Deacon P, Dickson RA (1985) Vertebral growth and the influence of the periosteum: a radiographic and histological study. J Bone Jt Surg 67-B:844Google Scholar
  9. De Bastiani G, Aldegheri R, Brivio LR, Trivella G (1986) Limb lengthening by distraction of the epiphyseal plate. J Bone Jt Surg 68-B:545–548Google Scholar
  10. Ehrlich MG, Mankin HJ, Treadwell BJ (1972) Biochemical and physiological events during closure of the stapled distal femoral epiphyseal plate in rats. J Bone Jt Surg 54-A:309–322Google Scholar
  11. Frantz CH (1971) Epiphyseal stapling: A comprehensive review. Clin Orthop 77:149–157PubMedGoogle Scholar
  12. Hähnel H (1977) Die Distraktionsepiphyseolyse — erste Erfahrungen bei der operativen Beinverlängerung nach Ilisarow. Beitr Orth Traum 24:594–603Google Scholar
  13. Herwig J, Schmidt A, Matthiass HH, Kiemann H, Buddecke E (1987) Biochemical events during stapling of the proximal tibial epiphyseal plate in pigs. Clin Orthop 218:283–289PubMedGoogle Scholar
  14. Houghton GR, Rooker GD (1979) The role of the periosteum in the growth of long bones. J Bone Jt Surg 61-B:218–220Google Scholar
  15. Hueter C (1862) Anatomische Studien an den Extremitätengelenken Neugeborener und Erwachsener. Virchows Arch 25:572–599CrossRefGoogle Scholar
  16. Ilizarov GA, Soibelman LM (1969) Some clinical and experimental data concerning bloodless lengthening of lower extremities. Exp Khir Anest 4: 27–32Google Scholar
  17. Jani L (1975) Die Distraktionsepiphyseolyse: Tierexperimentelle Studie zum Problem der Beinverlängerung. Z Orthop 113:189–198PubMedGoogle Scholar
  18. Jones CB, Aichroth PM, Dewar ME (1985) Gradual distraction of the epiphyseal growth plate: a human study of the forces generated and early effects on the growth plate. J Bone Jt Surg 67-B:843–844Google Scholar
  19. Karaharju EO, Ryöppy SA, Mäkinen RJ (1976) Remodelling by asymmetrical epiphyseal growth — an experimental study in dogs. J Bone Jt Surg 58-B: 122–126Google Scholar
  20. Karbowski A, Camps L (1985) Morphologische, morphometrische und stereologische Aspekte einseitiger Blountscher Klammerung der Wachstumsfuge im Tierexperiment. Z Orthop 123:403–408PubMedCrossRefGoogle Scholar
  21. Karbowski A, Camps L, Matthiass HH (1989a) Histopathological features of unilateral stapling in animal growth plate. Arch Orthop Trauma Surg, im DruckGoogle Scholar
  22. Karbowski A, Camps L, Matthiass HH (1989b) Metaphyseal aspects of stapling — an experimental study in pigs. Arch Orthop Trauma Surg, im DruckGoogle Scholar
  23. Letts RM, Meadows L (1978) Epiphyseolysis as a method of limb lengthening. Clin Orthop 133:233–237Google Scholar
  24. Matthiass HH, Oosterhoff D, Klemann H, Fleischer M (1982) Die Wachstumsaktivität der Fuge unter verschiedenen funktionellen Bedingungen. In: Hackenbroch MH, Refior HJ, Jäger M (Hrsg) Osteogenese und Knochenwachstum. Thieme, Stuttgart New York, S 19–25Google Scholar
  25. Mau H (1984) Spezifizierung der korrespondierenden Wachstums-Gesetze von Hueter-Volkmann und Pauwels (Wachstumsdeformitäten) und ihre Beziehung zu den Belastungsdeformitäten. Z Orthop 122:293–298PubMedCrossRefGoogle Scholar
  26. Monticelli G, Spinelli R (1981) Distraction epiphysiolysis as a method of limb lengthening. III. Clinical applications. Clin Orthop 154:274–285PubMedGoogle Scholar
  27. Moreland MS (1980) Morphological effects of torsion applied to growing bone. J Bone Jt Surg 62-B:230–237Google Scholar
  28. Pauwels F (1975) Eine klinische Beobachtung als Beispiel und Beweis für funktionelle Anpassung des Knochens durch Längenwachstum. Z Orthop 113: 1–5PubMedGoogle Scholar
  29. Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  30. Peltonen JI, Karaharju EO, Alitalo I (1984) Experimental epiphyseal distraction producing and correcting angular deformities. J Bone Jt Surg 66-B: 598–602Google Scholar
  31. Porter RW (1978) The effect of tension across a growing epiphysis. J Bone Jt Surg 60-B:252–255Google Scholar
  32. Siffert RS (1956) The effect of staples and longitudinal wires on epiphyseal growth. J Bone Jt Surg 38-A:1077–1088Google Scholar
  33. Van der Sandt H (1977) The influence of transverse section of the periosteum on the growth of the rabbit femur. Thesis, Catholic University Nijmegen, NetherlandsGoogle Scholar
  34. Volkmann R (1862) Chirurgische Erfahrungen über Knochenverbiegungen und Knochenwachstum. Arch Pathol Anat 24:512–540CrossRefGoogle Scholar
  35. Warell E, Taylor JF (1976) The effect of trauma on tibial growth. J Bone Jt Surg 58-B:375Google Scholar
  36. Wasserstein I, Schewior Th (1983) L’allongement des membres inférieurs par épiphysiolyse au moyen d’un fixateur externe. Méd Hyg 41:1629–1634Google Scholar

Copyright information

© Springer-Verlag · Heidelberg 1989

Authors and Affiliations

  • A. Karbowski
    • 1
  • H. H. Matthiaß
    • 1
  1. 1.Klinik und Poliklinik für Allgemeine OrthopädieWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations