Skip to main content

Ballistic Electron Transport in Hot Electron Transistors

  • Chapter
Physics of Quantum Electron Devices

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 28))

Abstract

We review the history and the present impact of hot electron devices. We elaborate in particular on the tunnelling hot electron transfer amplifier (THETA) device. This device generates an almost monoenergetic, variable energy, hot electron beam (by tunnelling), which traverses a thin GaAs region to be eventually collected and energy analyzed. As the hot electrons traverse the device they are used to probe: scattering events, band nonparabolicity, size quantization effects, intervalley transfer, quantum mechanical reflections, and band discontinuities at interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Shur, L. F. Eastman: IEEE Trans. Electron Devices 26, 1677 (1979)

    Article  Google Scholar 

  2. J. J. Rosenberg, E. J. Yoffa, M. I. Nathan: IEEE Trans. Electron Devices 28, 941 (1981)

    Article  Google Scholar 

  3. L. F. Eastman, R. Stall, D. Woodard, N. Dandekar, C. E. C. Wood, M. S. Shur, K. Board: Electron. Lett. 16, 525 (1980)

    Article  Google Scholar 

  4. P. Hesto, J-F. Pone, R. Castagne: Appl. Phys. Lett. 40, 405 (1982)

    Article  CAS  Google Scholar 

  5. D. J. Barterlink, J. L. Moll, N. I. Meyer: Phys. Rev. 130, 972 (1963)

    Article  Google Scholar 

  6. J. R. Hayes, A. F. J. Levi, W. Wiegmann: Electron. Lett. 20, 851 (1984)

    Article  CAS  Google Scholar 

  7. J. R. Hayes, A. F. J. Levi, W. Wiegmann: Phys. Rev. Lett. 54, 1570 (1985)

    Article  CAS  Google Scholar 

  8. N. Yokoyama, K. Imamura, T. Ohshima, N. Nishi, S. Muto, K. Kondo, S. Hiyammzu: IEEE Digest IEDM, 532 (1984)

    Google Scholar 

  9. M. Heiblum, D. C. Thomas, C. M. Knoedler, M. I. Nathan: Appl. Phys. Lett. 47, 1105 (1985)

    Article  Google Scholar 

  10. A. F. J. Levi, J. R. Hayes, P. M. Platzman, W. Wiegmann: Phys. Rev. Lett. 55, 2071 (1985)

    Article  CAS  Google Scholar 

  11. M. Heiblum, M. I. Nathan, D. C. Thomas, C. M. Knoedler: Phys. Rev. Lett. 55, 2200 (1985)

    Article  CAS  Google Scholar 

  12. M. Heiblum, I. M. Anderson, C. M. Knoedler: Appl. Phys. Leu. 49, 207 (1986)

    Article  CAS  Google Scholar 

  13. U. K. Reddy, J. Chen, C. K. Peng H. Morkoç: Appl. Phys. Lett. 48, 1799 (1986)

    Article  CAS  Google Scholar 

  14. J. S. Blakemore: J. Appl. Phys. 53, R123 (1982)

    Article  CAS  Google Scholar 

  15. Marvin L. Cohen, T. R. Bergstresser: Phys. Rev. 141, 789 (1966). A slight modification was necessary: a pseudopotential parameter V s(G 2 = 11) = 0.055 was used instead of 0.06, in order to obtain a more realistic Γ to L energy split of 0.32 eV

    Article  CAS  Google Scholar 

  16. T. Hiroshima, R. Lang: Appl. Phys. Lett. 49, 456 (1986)

    Article  CAS  Google Scholar 

  17. J. H. Luttinger, W. Kohn: Phys. Rev. 97, 869 (1954)

    Article  Google Scholar 

  18. M. A. Littejohn, J. R. Houser, T. W. Gilson: J. Appl. Phys. 48, 4587 (1977). Some of the reasons for the good empirical fits of the lower values of the commonly used nonparabolicity parameters to experimental data (such as the bulk plasma frequency vs. carrier concentration), are either the fact that second order corrections have been ignored even at high energies, or due to the incorrect use of the optical mass (Eq. (3b)). This mass includes an extra factor 2 in front of the parameter y, thus implying an under estimation of the nonparabolicity parameter.

    Article  Google Scholar 

  19. C. A. Mead: Proc. IRE 48, 359 (1960)

    Google Scholar 

  20. M. Heiblum: Solid-St. Electron. 24, 343 (1981)

    Article  CAS  Google Scholar 

  21. C. A. Mead: J. Appl. Phys. 32, 646 (1961)

    Article  Google Scholar 

  22. J. P. Spratt, R. F. Schwarz, W. M. Kane: Phys. Rev. Lett. 6, 341 (1961)

    Article  CAS  Google Scholar 

  23. R. N. Hall: Solid-St. Electron. 3, 320 (1961)

    Article  Google Scholar 

  24. J. L. Moll: IEEE Trans. Electron Dev. 10, 299 (1963)

    Article  Google Scholar 

  25. M. M. Atalla, R. W. Soshea: Solid-St. Electron. 6, 245 (1963)

    Article  Google Scholar 

  26. M. Heiblum, S. Y. Wang, T. K. Gustafson J. R. Whinnery J: Quantum Electron. 14, 159 (1978)

    Article  Google Scholar 

  27. D. V. Geppert: Proc. IRE 48, 1527 (1961)

    Google Scholar 

  28. D. Khang: Proc. IRE 50, 1534 (1961)

    Google Scholar 

  29. J. M. Levine, A. A. Iannini: Solid-St. Electron. 5, 109 (1962), and 273 (1962)

    Google Scholar 

  30. E. Rosencher, S. Delage, Y, Campidelli, F. A. D’Avitaya: Electron. Lett. 20, 764 (1984)

    Google Scholar 

  31. J. C. Hensel, A. F. J. Levi, R. T. Tung, J. M. Gibson: Appl. Phys. Lett. 47, 151 (1985)

    Article  CAS  Google Scholar 

  32. C. O. Bozler, G. D. Alley, R. A. Murphy, D. C. Flanders, W. T. Lindley: IEEE Tech. Digest IEDM, 384 (1979)

    Google Scholar 

  33. J. M. Shannon: IEE J. Solid-St. Electron. Dev. 3, 142 (1979)

    Article  Google Scholar 

  34. M. Heiblum: IBM Tech. Disclosure Magaz. 24, 4507 (1982)

    Google Scholar 

  35. J. M. Shannon A. Gill: Elect. Lett. 17, 621 (1981)

    Article  Google Scholar 

  36. R. J. Malik, K. Board, L. F. Eastman, D. J. Woodard, C. E. C. Wood, T. R. AuCoin: Proc. Conf. Active Microwave Dev., Cornell Univ. 1981 (unpublished)

    Google Scholar 

  37. M. A. Hollis, S. C. Palmateer, L. F. Eastman, N. V. Dandeker, P. M. Smith: Electron. Dev. Lett. 4, 440 (1983)

    Article  Google Scholar 

  38. J. M. Woodwock, J. J. Harris, J. M. Shannon: Physica 134B, 111 (1986)

    Google Scholar 

  39. I. Hase, H. Kawai, S. Imanaga, K. Kaneko, N. Watanabe: Electron. Lett. 21, 757 (1985)

    Article  CAS  Google Scholar 

  40. N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, H. Nishi, Jap: Appl. Phys. 24, L853 (1985)

    Article  CAS  Google Scholar 

  41. A. P. Long, P. H. Beton, M. J. Kelly: Semicon. Sci. Tech. 1, 63 (1986)

    Article  CAS  Google Scholar 

  42. U. K. Reddy, J. Chen, W. Kopp, C. K. Peng, D. Mui, H. Morin: IEEE Trans. Electron Device 33, 1865 (1986)

    Article  Google Scholar 

  43. K. Imamura, S. Muto, T. Fujii, N. Yokoyama, S. Hiyamizu, A. Shibatomi: Electron. Lett. 22, 1148 (1986)

    Article  Google Scholar 

  44. C. Y. Chang, Y. C. Liu, M. S. James, Y. H. Wang, S. Luryi, S. Sze: IEEE Electron. Dev. Lett. 7, 497 (1986)

    Article  Google Scholar 

  45. S. Luryi: IEEE Electron. Dev. Lett. 5, 347 (1986)

    Google Scholar 

  46. P. M. Solomon: European Patent office Gazette, No. 92645, Filed 1983

    Google Scholar 

  47. K. Matsumoto, Y. Hayashi, N. Hashizumi, T. Yao, M. Kato, T. M. Ashita, N. Fukuhara, H. Hirashima, T. Kinosada: IEEE Electron Device Lett. 7, 627 (1986)

    Article  Google Scholar 

  48. R. J. Malik, T. R. Aucoin, R. L. Ross, K. Board, C. E. C. Wood, F. Eastman: Electron. Lett. 16, 836 (1980)

    Article  CAS  Google Scholar 

  49. D. Arnold, K. Hess: J. Appl. Phys. 61, 5178 (1987)

    Article  CAS  Google Scholar 

  50. E. Decastro, P. Olivo: Phys. Status Solidi B132, 153 (1985)

    Article  CAS  Google Scholar 

  51. P. Price: Superlattices and Microstructure 2, 213 (1986)

    Article  Google Scholar 

  52. G. Krieger, R. Swanson: J. Appl. Phys. 52, 5710 (1981)

    Article  CAS  Google Scholar 

  53. Z. A. Weinberg: J. Appl. Phys. 53, 5052 (1982)

    Article  CAS  Google Scholar 

  54. Sadas Adachi: J. Appl. Phys. 46, 3932 (1985)

    Google Scholar 

  55. G. Lewicky, J. Maserjian: J. Appl. Phys. 46, 3032 (1975)

    Article  Google Scholar 

  56. D. J. DiMaria, M. V. Fischetti, J. Batey, L. Dori, E. Tierney, J. Stasiak: Phys. Rev. Lett. 56, 3213 (1986)

    Article  Google Scholar 

  57. T. W. Hickmott: Appl. Phys. Lett. 44, 90 (1984)

    Article  CAS  Google Scholar 

  58. F. Capasso, S. Sen, A. Y. Cho, A.. L. Hutchinson: Appl. Phys. Lett., 50, 930 (1987)

    CAS  Google Scholar 

  59. M. Shur: Appl. Phys. Lett., 47, 869 (1985)

    Article  Google Scholar 

  60. A. Chandra, L. F. Eastman: J. Appl. Phys. 51, 2669 (1980)

    Article  CAS  Google Scholar 

  61. A. F. J. Levi, J. R. Hayes, P. M. Platzman, W. Weigman: Physica B134, 4801 (1985)

    Google Scholar 

  62. Frank Stern: Phys. Rev. Lett. 18, 546 (1967)

    Article  Google Scholar 

  63. Alexander L. Fetter: Annals of Physics 81, 267 (1973); 88, 1 (1974)

    Google Scholar 

  64. David A. Dahl, L. J. Sham: Phys. Rev. B16, 651 (1977)

    Article  Google Scholar 

  65. Eric D. Siggia, P. C. Kwok: Phys. Rev. B2, 1024 (1970)

    Article  Google Scholar 

  66. J. Lin, I. C. Chiu: Appl. Phys. Lett. 49, 1802 (1986)

    Article  Google Scholar 

  67. T. Ando, A. B. Fowler, Frank Stern: Rev. Mod. Phys. 54, 427 (1982)

    Article  Google Scholar 

  68. Frank Stern: J. Computational Phys. 6, 56 (1970)

    Article  Google Scholar 

  69. D. A. Aspnes: Phys. Rev. B14, 5331 (1976);

    Article  CAS  Google Scholar 

  70. H. J. Lee, L. Y. Juravel, J. C. Wooley: Phys. Rev. B21, 659 (1980)

    Article  CAS  Google Scholar 

  71. T. P. McLean: Progress in Physics, (Wiley, New York, 1960 ), Vol. 5, p. 55

    Google Scholar 

  72. E. M. Conwell: High Field Transport in Semiconductors, Academic Press, New York (1967)

    Google Scholar 

  73. K. Kash, P. A. Wolf, Bonner: Appl. Phys. Lett. 42, 173 (1983)

    CAS  Google Scholar 

  74. M. Heiblum, E. Calleja, I. M. Anderson, W. P. Dumke, C. M. Knoedler, L Osterling: Phys. Rev. Lett. 56, 2854 (1986)

    Article  CAS  Google Scholar 

  75. I. Hase, H. Kawai, S. Imanaga, K. Kaneko, W. Watanabe: International Workshop on Future Electron Devices: Superlattice Devices, (Japan, 1987), Conference Procedings, p. 63

    Google Scholar 

  76. M. Chandrasekhar, F. H. Pollack: Phys. Rev. B15, 2127 (1977);

    Article  CAS  Google Scholar 

  77. D. Olego, M. Cardona, and H. Müller, Phys. Rev. B22, 894 (1980)

    Article  CAS  Google Scholar 

  78. M. Büttiker, R. Landauer: Phys. Rev. Lett. 49, 1739 (1982)

    Article  Google Scholar 

  79. K. Seo, M. Heiblum, C. M. Knoedler, W-P. Hong, P. B. Bhattacharya: to be published

    Google Scholar 

  80. M. Heiblum, K. Seo, H. P. Meier, T. W. Hickmott: Phys. Rev. Lett. 60, 828 (1988)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiblum, M., Fischetti, M.V. (1990). Ballistic Electron Transport in Hot Electron Transistors. In: Capasso, F. (eds) Physics of Quantum Electron Devices. Springer Series in Electronics and Photonics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74751-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74751-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74753-3

  • Online ISBN: 978-3-642-74751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics